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ABSTRACT 

      
  Nowadays, “Face Recognition” was introduced to our 

daily life, it has been popular for people who are 

interested in computer vision. Among different 

applications, “Face Changing” is one of the hottest 

topics, but most of such technologies are not as good as 

we thought. Also, difficulty to implement is another issue 

that results in unpredictable outcomes. In this project, 

our goal is to improve the similarity and generalizability 

of face changing by adjusting existing algorithms, making 

the whole process much easier to handle. As an ultimate 

goal, we hope to get a better output compared with 

original image. 

  First, we have observed that the original algorithms 

only allow similar face angle to get somewhat good 

result. As a result, we try to focus on this point. However, 

we encounter some difficulties. Second, although the 

original two pictures have similar face angle, it still has 

some combination problems. These problems are hair 

and glass problem which will lead to strange results 

showed in Figure 3. 

      
1. INTRODUCTION 
  While better hardware device such as GPU comes out 

recent years, Deep learning technology and its 

applications has overwhelmed every field of science, 

including computer vision. “Face-Swapping” is one of 

the most popular topics in such area. 

  So, what is “Face-Changing” mean? In short, we can 

treat it as AI-powered computer vison technology whose 

job is changing one’s face to other’s appearance. For 

example, an interesting technology called “Deep Fakes” 

debuted a few years ago is a successful application based 

on latest deep learning method “Generative Adversarial 

Network”. It can easily swap the source face image in the 

video with any target face such as celebrities or 

politicians. Unfortunately, this technology needs large 

effort to implement and requires strong device for 

running. Hence, in order to popularize the face-changing 

technology and make it easy to implement, we introduced 

a faster and simpler method based on existed algorithm 

Vahid Kazemi and Josephine Sullivan (2014) published 

[1] to overcome the issues mentioned above. 

  The original algorithm used cascade of regressors to 

extract our face features like eyes, nose, and mouth. After 

reasonable iterations, we can get the feature map as our 

first input for the model. But, without any adjustment and 

refinement, the original result became a tragedy since 

most of swapped(changed) faces are unreal and distorted.    

  In this project, we will change face to some better 

degree. The original algorithm has some problems. One is 

that if the face angles in two images are different, the 

result will become inferior. Another is that if someone’s 

hair is so long to cover his face, the result will become 

mixed with hair and face. We want to solve these issues. 

  However, the first part of rotating two images has a 

great difficulty for us. We just propose a thought which 

uses TP-GAN but needs to recover the face angle. 

  In general, we built a faster model to achieve the better 

performance by adding more adjustment. Though there 

are still some problems existing, performance itself has 

shown that, without thoroughgoing examining, people are 

hardly to distinguish it  from the face in real world. 

      
2. METHOD AND STEPS 
      
2.0. Rotate Two Images into the Same Angle 
      
  If we want to implement such face changing technology, 

angle alignment is a must-do in order to reach high 

similarity. 

  To do so, there are plenty of ways which can finish the 

job. We will introduce one of them in this topic. A two- 

dimension rotation matrix: 

  
  Let the angle between target image and source image be 

�, we can then multiply source image matrix by M(�) 

and get the new source image with the same face angle as 

target. 
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However, the result is not ideal. We start to search some 

methods for rotating face angles and find a machine 

learning method named TP-GAN[3]. TP-GAN is a 

Generative Adversarial Network method which can 

recover a frontal face image of the same person from a 

single face image under any poses. 

 

 
Figure 1 TP-GAN can rotate the face angles into frontal 

face. 

By this technic, we can first rotate two face into frontal 

ideally, and then avoid face angles problems. 

Nevertheless, if we want to do face changing, we need to 

reserve origin face angle. Which means if we adopt TP-

GAN, we need to find a method to recover original face 

angle. Recovering original face angle is also a difficult 

work which need GAN and consume execution time. Our 

goal is doing faster face changing, so we finally do not 

consider adopting this method. As a result, our algorithm 

exists limitation to the face angle problem. If we want to 

use this algorithm, we have to let the face angles of two 

images be close to.  

Besides TP-GAN, if There exists a model which can 

arbitrary rotate face angle to a special angle, the problem 

will be solved clearly. However, as for today, nobody has 

found or created such a miraculous model. 

      
2.1. Extract Face Features 

 

First, we will use the existed algorithms Vahid Kazemi 

and Josephine Sullivan (2014) published [1] as basis. The 

idea in the paper is to estimate the facial landmarks in 

efficient method which uses cascade of regressors. To 

begin with, let xi ∈ R2 be the x,y-coordinates of the ith 
facial landmark in an image I. Then we put all the p 
facial landmarks into the vector S where its size is 
68*2 (p = 68 with their original coordinates x,y). We 
take Ŝ(t) to represent the current estimate of S, and rt 
(.,.) as regressor factor. After each prediction of face 
features, an update vector from image will be added 
into current estimate Ŝ(t) to improve the estimate: 

 

Ŝ(t+1) = Ŝ(t) + rt (I, Ŝ(t)) 

 

This is the basic regression algorithm in our re-

implementation. 

The important part of the cascade is that the regressor 

predicts based on features such as pixel intensity values. 

We choose pixel intensity, because we can retain the 

geometric invariance during the process. When cascade 

proceeds, the prediction can be more certain about 

whether semantic location on the face is indexed or not.  

As for each regressor, we train it with gradient tree 

boosting algorithm [1]. 

Second, we need to let the model to learn each regressor 

in the cascade. Assume we have training data 

(I1,S1,...,In,Sn) where each Ii is a face image Si its shape 

vector. To learn the initial regression function r0 in the 

cascade, we use the data to create a triplet of face image, 

initial shape estimate, target update step, that is, 

(Iπi,Ŝi
(0)

,ΔSi
(0)

) where 

      

πi  ∈ {1,...,n} 

Ŝi(0)∈ {S1,...,Sn} 

ΔSi(0) = Sπi - Ŝi(0) 

 
From this data we can learn the regression function r0 

using gradient tree boosting with a sum of square error 

loss. The  
set of triplets is then updated and become the input of the 

next training data, (Iπi,Ŝi
(1)

,ΔSi
(1)

). 

For the next regressor r1 in cascade, we set 

    

Ŝi(t+1) = Ŝi(t) + rt (Iπi, Ŝi(t)) 
ΔSi(t+1) = Sπi - Ŝi(t+1) 

 



 

 

 

 

 

 

 

 

 

 
The whole work is iterated until a cascade of T regressors 

r0, r1, …, rT-1 are learnt with sufficient level of accuracy. 

With the help of Python library “dlib”, a modern C++ 

toolkit containing machine learning algorithms and tools, 

we can easily compute the algorithm mentioned above. 

Function get_landmarks() turns an image into a 2D array, 

and we use the detector to extract the face edge since we 

need the face edge as input for predictor to train. When 

the procedure is done, we can get an output of 68*2 

matrix containing 68 different face feature positions. 

 

 
figure shows the pseudo code described above.  

 

  

Figure 3 The result of dlib. This process has some 

problems. The main problem is that landmarks are few in 

face. 

      
2.2. Procrustes Analysis 
      
  Thus at this point we have our two landmark matrices, 

each row having coordinates to a particular facial feature. 

We are now going to work out how to rotate, translate, 

and scale the points of the first vector such that they fit as 

closely as possible to the points in the second vector, the 

idea being that the same transformation can be used to 

overlay the second image over the first. To put it more 

mathematically, we seek T, s, and R such that 

 
is 

minimized, 

where R is 

an 

orthogonal 

2x2 

matrix; s is a scalar; T is a 2-vector; and  and  are 

the rows of the landmark matrices calculated above. It 

turns out that this sort of problem can be solved with 

an Ordinary Procrustes Analysis [2]. 

Function transformation_from_points: 

1. Convert the input matrices into floats. This is 

required for the operations to follow. 

2. Subtract the centroid from each of the point sets. 

Once an optimal scaling and rotation has been found for 

the resulting point sets, the centroids c1 and c2 can be 

used to find the full solution. 

3. Similarly, divide each point set by its standard 

deviation. This removes the scaling component of the 

problem. 

4. Calculate the rotation portion using the Singular 

Value Decomposition. See Wikipedia article on the 

Orthogonal Procrustes Problem for details of how this 

works. 

5. Return the complete transformation as an affine 

transformation matrix. 

The result can then be plugged into OpenCV’s 

cv2.warpAffin function to map the second image onto the 

first which in the function warp_im(). 

After doing Procrustes analysis, we can get a pair of same 

face angles and scales pictures.  

 

  

Figure 4 After Procrustes Analysis. 

 

2.3. Regulate the Color of Source Image 

 

 

Figure 2 Flowchart of this algorithms. 



 

 

Since the color and contrast will be different often, we 

must strive to solve this kind of problem. We attempt to 

change the colouring of image 2 to match that of image 1. 

. We first divide the original pixels of image 2 by the 

Gaussian Blur of it, called it image 2_blur. And then 

multiply image 2 by the value of image 1’s Gaussian 

Blur. Finally, we can get the regulated version of source 

image 2. This procedure is based on the idea of scaling 

monitor R, G, and B. 

This part of function in code is correct_colours().With 

this approach differences in lighting between the two 

images can be accounted for, to some degree. For 

example, if image 1 is lighted from one side but image 2 

has uniform lighting then the colour corrected image 2 

will appear darker on the unlit side as well. 
However, the algorithm is a fairly crude solution and 

having some problems. One is that the forehead in the 

faces sometimes will be very different. For example, 

most of women have long hair which cover forehead. As 

a result, the output image will also have long hair which 

covers forehead and becomes so strange. Another is the 

problem of freckle. If face A has freckle and face B does 

not, the output image will become discontinuous. We 

need to solve the above problems to make a better result. 

 

  

Figure 5 After regulating the Color of Source Image. 

 

2.4. Clear Hair Problem 
      
In Figure 3 we can find that the face changing will 

include hair part. It is because during 2.3 “Regulate the 

Color of Source Image” part, the algorithms will include 

brows. However, some hair especial women hairs will 

cover their brow. As a result, we should remove them to 

make the combination looks better. 

We apply three method below: 

1.  Removing hair by pixel value 

First, we assume that the hair color is nearly identical 

everywhere. Then using [4] to detect hair zone. 

Averaging pixel value of hair zone and setting a threshold. 

If some pixel value is between the (averaging pixel value 

+ threshold) and (averaging pixel value - threshold), we 

see it as hair part. Finally, we remove it and use near 

pixel value belonging brow to recover the missing part. 

This method is a little overkill and waste execute time. 

2. Directly remove hair from brow 

If we only focus on the brow part, we can find that hair 

often only cover a little part of brow. As a result, we can 

depart the brow zone into some regions and calculate the 

averaging pixel values. Using this algorithm, we can find 

the location of hair covering brow and remove them. 

After removing the hair, we use near zone to recover the 

missing part. This method needs little execute time and 

can get a quite good result. 

3.Ignoring brow part 

We can just ignore brow part of face changing. It will 

lead to good result whether the picture has hair cover 

problem or not. However, if we ignore the brow, the final 

image will sometimes lack of spirit and become another 

person. 

The funny result shows that brow is an important part for 

a person. 

  
(a) 

 
(b) 



 

 

 
(c) 

Figure 6 Face changing without brows, it will lead the 

combination become another person. (a) Original (source) 

image (Chen Yu Qi). (b) Target image (Aragaki Yui). (c) 

Final image we mix. 

      
2.5. Mix the Feature to Target Image 
      
Finally, we will create a mask that decides which pixel 

will be chosen as a part of the mixed image.  

The full process is to compute two masks corresponding 

to source and target image. To achieve such mask, we use 

a function defined as get_face_mask (), which calculate 

two convex hull: eye area and nose-mouth area, from the 

image and its 68*2 matrix. After that, we compute the 

Gaussian blur of two convex hulls in order to eliminate 

any discontinuous regions. By repeating the process, we 

can get both masks of source and target image in the end. 

With these two masks, the last part of mixing feature is to 

combine them together by calculating the element-wise 

maximum value, so we can ensure the characteristic of 

source image shown on the target image. 

Every matrix value of combined-mask is between 0 and 

1. Hence, we can directly decide which image element 

should be chosen in certain region. For instance, we keep 

the target image as the same if the mask value is 0 and 

replace by the source image if the value is 1. For those 

values among 0 and 1, we simply take average of two 

images as final result. 

 
  

Figure 7 Using mask to determine which part of the face 

will be changed. 

      
3. ORIGIN RESULT 

 

We will show the origin result first. Actually, the origin 

algorithm already has quite good result at some special 

situations. For example, if two faces have nearly face 

angles and face colours, the result will be good. The 

result can not only change face clearly but also confuses 

human eyes. However, if two faces have quite different 

face angles or colours, the result will be terrible and 

horrible. 

 

 
(a) 

 

 

 
(b) 

 
(c) 

 

Figure 8 Somewhat good result of the algorithm, but it 

still has some problems. (a) Original (source) image (our 

classmate). (b) Target image (Morgan Freeman). (c) Final 

image we mix. 

 



 

 

 
(a) 

 

  

 
(b) 

 

 
(c) 
Figure 9 Somewhat bad result of the algorithm, it has 

obvious hair problem. (a) Original (source) image (The 

face of Ing-Wen Tsai which has no hair covering brows). 

(b) Target image (a beautiful face with hair covering 

brows). (c) Final image we mix. 

 

 

  
(a) 

 
(b) 

 
(c) 

Figure 10 Somewhat bad result of the algorithm, the two 

face have quite different colours . (a) Original (source) 

image (Chen Yu Qi). (b) Target image (Naomi 

Campbell). (c) Final image we mix. 

 
4. EXPERIMENT 

 

In this section, we will discuss some parameters which 

can affect the quality of results. 

First part is whether maintaining brows part or not. As we 

have discussed in section 2.4, if the target face has 

problem of hair covering brows. A good approach to 

avoid this problem is to ignore the brows during merging. 

We will show the effect below. 

 



 

 

  

  

Figure 11 By ignoring brows, the result will be good. 

 

However, if we look at the merging picture clearly, we 

will find discontinuity exists. The key to solve this 

problem is to add the parameter FEATHER_AMOUNT 

which helps hide any remaining discontinuities. 

Nevertheless, if FEATHER_AMOUNT becomes larger, 

it may cover the hair part. As a result, we should consider 

which is a good value for each situation. 

 

  

Figure 12 FEATHER_AMOUNT of left picture is 11. 

FEATHER_AMOUNT of right picture is 21. Right 

picture covers the hair part. 

 

Besides FEATHER_AMOUNT, the parameter 

COLOUR_CORRECT_BLUR_FRAC also plays 

important role in the final result.  

During Section 2.3 Regulating the Color of Source Image, 

an appropriate size Gaussian kernel is key. Too small and 

facial features from the first image will show up in the 

second. Too large and kernel strays outside of the face 

area for pixels being overlaid, and discolouration occurs. 

Let us show the difference between different 

COLOUR_CORRECT_BLUR_FRAC  below. 

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 
Figure 13 By using different 

COLOUR_CORRECT_BLUR_FRAC, the result will be 

quite different. (a) COLOUR_CORRECT_BLUR_FRAC 

= 0.1 (b) COLOUR_CORRECT_BLUR_FRAC = 0.3 (c) 

COLOUR_CORRECT_BLUR_FRAC = 0.6 (d) 

COLOUR_CORRECT_BLUR_FRAC = 0.9 

 

What is more, the way to determine which zone should be 

mixed also affects the result. First, let us show two 

pictures. 

 



 

 

 

(a) 

 

(b) 
Figure 14 Different masks method also affect result. 

 

 

(a) 

 

(b) 

Figure 15 Different masks. 

 

The white zone in Figure 15 represents where target face 

should appear, and the black zone in Figure 15 represents 

where original face should remain. Figure14 use masks in 

Figure 15. 

Using b mask can get better result.    

 

5. CONCLUSION 

The original algorithm emphasizes using few codes 

(about 200 rows) and little executing time (about 3 

seconds) to change faces. At first, we were amazed 

because it can get good result within only little executing 

time. After we start to research it more, we finally found 

some problems of this algorithm and decided to solve. 

However, we cannot get the balance of executing time 

and performance. If we want better performance, we have 

to introduce many machine learning methods which will 

cost much executing time. 

What we have contributed is that we discussed the 

probability of face changing model. We have proposed 

some ways to improve the results and demonstrated the 

tuned results.  

Finally, we can get a conclusion. If we want a really good 

face changing technique, machine learning technique is 

important.  
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