

FASTER FACE CHANGING TECH

1
Cheng-You Lee (李承祐),

 2
 Chan-Min Hsu (許展銘),

3
 Chiou-Shann Fuh (傅楸善)

1
 Graduate Institute of Communication Engineering,

2
 Graduate Institute of Biomedical Electronics and Bioinformatics,
3
 Department of Computer Science and Information Engineering,

National Taiwan University, Taiwan,

r07942099@ntu.edu.tw r07945010@ntu.edu.tw fuh@csie.ntu.edu.tw

ABSTRACT

 Nowadays, “Face Recognition” was introduced to our

daily life, it has been popular for people who are

interested in computer vision. Among different

applications, “Face Changing” is one of the hottest

topics, but most of such technologies are not as good as

we thought. Also, difficulty to implement is another issue

that results in unpredictable outcomes. In this project,

our goal is to improve the similarity and generalizability

of face changing by adjusting existing algorithms, making

the whole process much easier to handle. As an ultimate

goal, we hope to get a better output compared with

original image.

 First, we have observed that the original algorithms

only allow similar face angle to get somewhat good

result. As a result, we try to focus on this point. However,

we encounter some difficulties. Second, although the

original two pictures have similar face angle, it still has

some combination problems. These problems are hair

and glass problem which will lead to strange results

showed in Figure 3.

1. INTRODUCTION
 While better hardware device such as GPU comes out

recent years, Deep learning technology and its

applications has overwhelmed every field of science,

including computer vision. “Face-Swapping” is one of

the most popular topics in such area.

 So, what is “Face-Changing” mean? In short, we can

treat it as AI-powered computer vison technology whose

job is changing one’s face to other’s appearance. For

example, an interesting technology called “Deep Fakes”

debuted a few years ago is a successful application based

on latest deep learning method “Generative Adversarial

Network”. It can easily swap the source face image in the

video with any target face such as celebrities or

politicians. Unfortunately, this technology needs large

effort to implement and requires strong device for

running. Hence, in order to popularize the face-changing

technology and make it easy to implement, we introduced

a faster and simpler method based on existed algorithm

Vahid Kazemi and Josephine Sullivan (2014) published

[1] to overcome the issues mentioned above.

 The original algorithm used cascade of regressors to

extract our face features like eyes, nose, and mouth. After

reasonable iterations, we can get the feature map as our

first input for the model. But, without any adjustment and

refinement, the original result became a tragedy since

most of swapped(changed) faces are unreal and distorted.

 In this project, we will change face to some better

degree. The original algorithm has some problems. One is

that if the face angles in two images are different, the

result will become inferior. Another is that if someone’s

hair is so long to cover his face, the result will become

mixed with hair and face. We want to solve these issues.

 However, the first part of rotating two images has a

great difficulty for us. We just propose a thought which

uses TP-GAN but needs to recover the face angle.

 In general, we built a faster model to achieve the better

performance by adding more adjustment. Though there

are still some problems existing, performance itself has

shown that, without thoroughgoing examining, people are

hardly to distinguish it from the face in real world.

2. METHOD AND STEPS

2.0. Rotate Two Images into the Same Angle

 If we want to implement such face changing technology,

angle alignment is a must-do in order to reach high

similarity.

 To do so, there are plenty of ways which can finish the

job. We will introduce one of them in this topic. A two-

dimension rotation matrix:

 Let the angle between target image and source image be

�, we can then multiply source image matrix by M(�)

and get the new source image with the same face angle as

target.

mailto:r07942099@ntu.edu.tw
mailto:r07945010@ntu.edu.tw
mailto:fuh@csie.ntu.edu.tw

However, the result is not ideal. We start to search some

methods for rotating face angles and find a machine

learning method named TP-GAN[3]. TP-GAN is a

Generative Adversarial Network method which can

recover a frontal face image of the same person from a

single face image under any poses.

Figure 1 TP-GAN can rotate the face angles into frontal

face.

By this technic, we can first rotate two face into frontal

ideally, and then avoid face angles problems.

Nevertheless, if we want to do face changing, we need to

reserve origin face angle. Which means if we adopt TP-

GAN, we need to find a method to recover original face

angle. Recovering original face angle is also a difficult

work which need GAN and consume execution time. Our

goal is doing faster face changing, so we finally do not

consider adopting this method. As a result, our algorithm

exists limitation to the face angle problem. If we want to

use this algorithm, we have to let the face angles of two

images be close to.

Besides TP-GAN, if There exists a model which can

arbitrary rotate face angle to a special angle, the problem

will be solved clearly. However, as for today, nobody has

found or created such a miraculous model.

2.1. Extract Face Features

First, we will use the existed algorithms Vahid Kazemi

and Josephine Sullivan (2014) published [1] as basis. The

idea in the paper is to estimate the facial landmarks in

efficient method which uses cascade of regressors. To

begin with, let xi ∈ R2 be the x,y-coordinates of the ith
facial landmark in an image I. Then we put all the p
facial landmarks into the vector S where its size is
68*2 (p = 68 with their original coordinates x,y). We
take Ŝ(t) to represent the current estimate of S, and rt
(.,.) as regressor factor. After each prediction of face
features, an update vector from image will be added
into current estimate Ŝ(t) to improve the estimate:

Ŝ(t+1) = Ŝ(t) + rt (I, Ŝ(t))

This is the basic regression algorithm in our re-

implementation.

The important part of the cascade is that the regressor

predicts based on features such as pixel intensity values.

We choose pixel intensity, because we can retain the

geometric invariance during the process. When cascade

proceeds, the prediction can be more certain about

whether semantic location on the face is indexed or not.

As for each regressor, we train it with gradient tree

boosting algorithm [1].

Second, we need to let the model to learn each regressor

in the cascade. Assume we have training data

(I1,S1,...,In,Sn) where each Ii is a face image Si its shape

vector. To learn the initial regression function r0 in the

cascade, we use the data to create a triplet of face image,

initial shape estimate, target update step, that is,

(Iπi,Ŝi
(0)

,ΔSi
(0)

) where

πi ∈ {1,...,n}

Ŝi(0)∈ {S1,...,Sn}

ΔSi(0) = Sπi - Ŝi(0)

From this data we can learn the regression function r0

using gradient tree boosting with a sum of square error

loss. The
set of triplets is then updated and become the input of the

next training data, (Iπi,Ŝi
(1)

,ΔSi
(1)

).

For the next regressor r1 in cascade, we set

Ŝi(t+1) = Ŝi(t) + rt (Iπi, Ŝi(t))
ΔSi(t+1) = Sπi - Ŝi(t+1)

The whole work is iterated until a cascade of T regressors

r0, r1, …, rT-1 are learnt with sufficient level of accuracy.

With the help of Python library “dlib”, a modern C++

toolkit containing machine learning algorithms and tools,

we can easily compute the algorithm mentioned above.

Function get_landmarks() turns an image into a 2D array,

and we use the detector to extract the face edge since we

need the face edge as input for predictor to train. When

the procedure is done, we can get an output of 68*2

matrix containing 68 different face feature positions.

figure shows the pseudo code described above.

Figure 3 The result of dlib. This process has some

problems. The main problem is that landmarks are few in

face.

2.2. Procrustes Analysis

 Thus at this point we have our two landmark matrices,

each row having coordinates to a particular facial feature.

We are now going to work out how to rotate, translate,

and scale the points of the first vector such that they fit as

closely as possible to the points in the second vector, the

idea being that the same transformation can be used to

overlay the second image over the first. To put it more

mathematically, we seek T, s, and R such that

is

minimized,

where R is

an

orthogonal

2x2

matrix; s is a scalar; T is a 2-vector; and and are

the rows of the landmark matrices calculated above. It

turns out that this sort of problem can be solved with

an Ordinary Procrustes Analysis [2].

Function transformation_from_points:

1. Convert the input matrices into floats. This is

required for the operations to follow.

2. Subtract the centroid from each of the point sets.

Once an optimal scaling and rotation has been found for

the resulting point sets, the centroids c1 and c2 can be

used to find the full solution.

3. Similarly, divide each point set by its standard

deviation. This removes the scaling component of the

problem.

4. Calculate the rotation portion using the Singular

Value Decomposition. See Wikipedia article on the

Orthogonal Procrustes Problem for details of how this

works.

5. Return the complete transformation as an affine

transformation matrix.

The result can then be plugged into OpenCV’s

cv2.warpAffin function to map the second image onto the

first which in the function warp_im().

After doing Procrustes analysis, we can get a pair of same

face angles and scales pictures.

Figure 4 After Procrustes Analysis.

2.3. Regulate the Color of Source Image

Figure 2 Flowchart of this algorithms.

Since the color and contrast will be different often, we

must strive to solve this kind of problem. We attempt to

change the colouring of image 2 to match that of image 1.

. We first divide the original pixels of image 2 by the

Gaussian Blur of it, called it image 2_blur. And then

multiply image 2 by the value of image 1’s Gaussian

Blur. Finally, we can get the regulated version of source

image 2. This procedure is based on the idea of scaling

monitor R, G, and B.

This part of function in code is correct_colours().With

this approach differences in lighting between the two

images can be accounted for, to some degree. For

example, if image 1 is lighted from one side but image 2

has uniform lighting then the colour corrected image 2

will appear darker on the unlit side as well.
However, the algorithm is a fairly crude solution and

having some problems. One is that the forehead in the

faces sometimes will be very different. For example,

most of women have long hair which cover forehead. As

a result, the output image will also have long hair which

covers forehead and becomes so strange. Another is the

problem of freckle. If face A has freckle and face B does

not, the output image will become discontinuous. We

need to solve the above problems to make a better result.

Figure 5 After regulating the Color of Source Image.

2.4. Clear Hair Problem

In Figure 3 we can find that the face changing will

include hair part. It is because during 2.3 “Regulate the

Color of Source Image” part, the algorithms will include

brows. However, some hair especial women hairs will

cover their brow. As a result, we should remove them to

make the combination looks better.

We apply three method below:

1. Removing hair by pixel value

First, we assume that the hair color is nearly identical

everywhere. Then using [4] to detect hair zone.

Averaging pixel value of hair zone and setting a threshold.

If some pixel value is between the (averaging pixel value

+ threshold) and (averaging pixel value - threshold), we

see it as hair part. Finally, we remove it and use near

pixel value belonging brow to recover the missing part.

This method is a little overkill and waste execute time.

2. Directly remove hair from brow

If we only focus on the brow part, we can find that hair

often only cover a little part of brow. As a result, we can

depart the brow zone into some regions and calculate the

averaging pixel values. Using this algorithm, we can find

the location of hair covering brow and remove them.

After removing the hair, we use near zone to recover the

missing part. This method needs little execute time and

can get a quite good result.

3.Ignoring brow part

We can just ignore brow part of face changing. It will

lead to good result whether the picture has hair cover

problem or not. However, if we ignore the brow, the final

image will sometimes lack of spirit and become another

person.

The funny result shows that brow is an important part for

a person.

(a)

(b)

(c)

Figure 6 Face changing without brows, it will lead the

combination become another person. (a) Original (source)

image (Chen Yu Qi). (b) Target image (Aragaki Yui). (c)

Final image we mix.

2.5. Mix the Feature to Target Image

Finally, we will create a mask that decides which pixel

will be chosen as a part of the mixed image.

The full process is to compute two masks corresponding

to source and target image. To achieve such mask, we use

a function defined as get_face_mask (), which calculate

two convex hull: eye area and nose-mouth area, from the

image and its 68*2 matrix. After that, we compute the

Gaussian blur of two convex hulls in order to eliminate

any discontinuous regions. By repeating the process, we

can get both masks of source and target image in the end.

With these two masks, the last part of mixing feature is to

combine them together by calculating the element-wise

maximum value, so we can ensure the characteristic of

source image shown on the target image.

Every matrix value of combined-mask is between 0 and

1. Hence, we can directly decide which image element

should be chosen in certain region. For instance, we keep

the target image as the same if the mask value is 0 and

replace by the source image if the value is 1. For those

values among 0 and 1, we simply take average of two

images as final result.

Figure 7 Using mask to determine which part of the face

will be changed.

3. ORIGIN RESULT

We will show the origin result first. Actually, the origin

algorithm already has quite good result at some special

situations. For example, if two faces have nearly face

angles and face colours, the result will be good. The

result can not only change face clearly but also confuses

human eyes. However, if two faces have quite different

face angles or colours, the result will be terrible and

horrible.

(a)

(b)

(c)

Figure 8 Somewhat good result of the algorithm, but it

still has some problems. (a) Original (source) image (our

classmate). (b) Target image (Morgan Freeman). (c) Final

image we mix.

(a)

(b)

(c)
Figure 9 Somewhat bad result of the algorithm, it has

obvious hair problem. (a) Original (source) image (The

face of Ing-Wen Tsai which has no hair covering brows).

(b) Target image (a beautiful face with hair covering

brows). (c) Final image we mix.

(a)

(b)

(c)

Figure 10 Somewhat bad result of the algorithm, the two

face have quite different colours . (a) Original (source)

image (Chen Yu Qi). (b) Target image (Naomi

Campbell). (c) Final image we mix.

4. EXPERIMENT

In this section, we will discuss some parameters which

can affect the quality of results.

First part is whether maintaining brows part or not. As we

have discussed in section 2.4, if the target face has

problem of hair covering brows. A good approach to

avoid this problem is to ignore the brows during merging.

We will show the effect below.

Figure 11 By ignoring brows, the result will be good.

However, if we look at the merging picture clearly, we

will find discontinuity exists. The key to solve this

problem is to add the parameter FEATHER_AMOUNT

which helps hide any remaining discontinuities.

Nevertheless, if FEATHER_AMOUNT becomes larger,

it may cover the hair part. As a result, we should consider

which is a good value for each situation.

Figure 12 FEATHER_AMOUNT of left picture is 11.

FEATHER_AMOUNT of right picture is 21. Right

picture covers the hair part.

Besides FEATHER_AMOUNT, the parameter

COLOUR_CORRECT_BLUR_FRAC also plays

important role in the final result.

During Section 2.3 Regulating the Color of Source Image,

an appropriate size Gaussian kernel is key. Too small and

facial features from the first image will show up in the

second. Too large and kernel strays outside of the face

area for pixels being overlaid, and discolouration occurs.

Let us show the difference between different

COLOUR_CORRECT_BLUR_FRAC below.

(a)

(b)

(c)

(d)
Figure 13 By using different

COLOUR_CORRECT_BLUR_FRAC, the result will be

quite different. (a) COLOUR_CORRECT_BLUR_FRAC

= 0.1 (b) COLOUR_CORRECT_BLUR_FRAC = 0.3 (c)

COLOUR_CORRECT_BLUR_FRAC = 0.6 (d)

COLOUR_CORRECT_BLUR_FRAC = 0.9

What is more, the way to determine which zone should be

mixed also affects the result. First, let us show two

pictures.

(a)

(b)
Figure 14 Different masks method also affect result.

(a)

(b)

Figure 15 Different masks.

The white zone in Figure 15 represents where target face

should appear, and the black zone in Figure 15 represents

where original face should remain. Figure14 use masks in

Figure 15.

Using b mask can get better result.

5. CONCLUSION

The original algorithm emphasizes using few codes

(about 200 rows) and little executing time (about 3

seconds) to change faces. At first, we were amazed

because it can get good result within only little executing

time. After we start to research it more, we finally found

some problems of this algorithm and decided to solve.

However, we cannot get the balance of executing time

and performance. If we want better performance, we have

to introduce many machine learning methods which will

cost much executing time.

What we have contributed is that we discussed the

probability of face changing model. We have proposed

some ways to improve the results and demonstrated the

tuned results.

Finally, we can get a conclusion. If we want a really good

face changing technique, machine learning technique is

important.

6. REFERENCES

[1] Kazemi, Vahid, and Josephine Sullivan. "One

millisecond face alignment with an ensemble of

regression trees." Proceedings of the IEEE conference on

computer vision and pattern recognition. 2014.

[2] Colin Goodall. Procrustes Methods in the Statistical

Analysis of Shape. Journal of the Royal Statistical

Society. Series B (Methodological), Vol. 53, No.

2(1991), 285-339.

[3]Huang, Rui and Zhang, Shu and Li, Tianyu and He,

Ran. Beyond Face Rotation: Global and Local Perception

GAN for Photorealistic and Identity Preserving Frontal

View Synthesis”. ICCV17.

[4] Hair detection, segmentation, and hairstyle

classification in the wild

U.R. Muhammad*, M. Svanera*, R. Leonardi, and S.

Benini* Image and Vision Computing, 2018.

