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Abstract

Advancements in microscopic techniques allow insight into the world of cells and

cellular structure. One such innovation is fluorescence microscopy, which enables us to

analyze the subcellular structure of a living cell with the advantage of specific labeling.

However, this technique comes with the potential problem of phototoxicity. The presence

of advantage and disadvantage also holds for transmitted light microscopy (TL), which is

a low-cost and label-free technology that nonetheless fails to easily distinguish targeted

subcellular objects. In this thesis, we adopted the label-free method developed by the

Allen Institute of Cell Science in using our TL microscopic images of cardiac myocyte-

derived cell line AC16 to train and predict 3D (z-stack) and time-series fluorescence

images. Convolutional neural networks (CNNs) have shown significant success in image

recognition and segmentation compared with traditional machine learning methods.

Based on a CNN-like U-Net architecture, the model can effectively predict fluorescence

images from new TL input by learning the relationships between live-cell TL and

fluorescence images for different kinds of subcellular structures. We specifically focused

on building corresponding models of subcellular mitochondrial structures using the

aforementioned CNN technology and compared the prediction results derived from

confocal microscopic, Airyscan microscopic, z-stack, and time-series images. With the

multi-model combined prediction, it is possible to generate integrated images through
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only TL input, reduce the time required for sample preparation, increase the time scales
to enable visualization and measurement, and understand the morphology and dynamics

of mitochondria and mtDNA.

Keywords: mitochondrial structure; convolutional neural networks; U-net; microscope

image prediction; 3D fluorescence images; time-series fluorescence images
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Chapter I: Introduction

Section 1-1: Background and Motivation

Mitochondria are dynamic organelles that regulate cellular energy, function, cell fate,
and survival[1]. The mitochondrial morphology is corresponded with the metabolic state
and varies during different tasks such as cell division and differentiation[2]. In addition,
mitochondria morphology and function can reflect the cellular health state, which makes
them an excellent object for scientists to evaluate cell health. Common diseases such as
neurodegenerative diseases, cancer and diabetes, all observed in changes of mitochondrial
morphology and dynamics[3]-[5]. Researchers have also used the mitochondria

phenotypes to distinguish tumor types and classify them[6], [7].

Because of the importance lying in mitochondria, it will be a cinch to further analyze
and quantify changes in their dynamic behavior and morphology. Traditional cell imaging
used fixed samples to conduct experiments, which cannot help researchers reveal the
dynamism of mitochondria[8]. Hence, the researchers started to use live cell imaging to
observe the details of cellular substructure decades ago. Such techniques are being
improved over time to further help understand the structure of these organelles. For
example, in the paper by Jevtic et al.[9], structured illumination microscopy (SIM) was

used to track mitochondrial nucleoids in SYBR Gold labeled live cells. By comparing

1
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each frame of SIM time-lapse images, they can calculate the distance between nucleoid
positions with algorithms. However, most live-cell imaging methods present some

restrictions.

The technique of fluorescence microscopy has been adopted in live-cell imaging in
the past decade, and indeed achieves big progress such as performing confocal time-lapse
and z-stack imaging in live cells[10]. Fluorescence microscopy has advantages of
resolving subcellular structure (e.g. mitochondria, nucleus, etc.) in living cells by specific
labeling, but it needs extra technical instrumentation and the sample preparation is time-
consuming. In addition, the challenge of photobleaching and phototoxicity emerged when
it comes to both z-stack and time-lapse imaging, creating a tradeoff between quality
(image resolution) and timescales available for live cells[11]-[13]. In contrast,
transmitted light microscopy (TL), e.g., bright-field, DIC, requires no labeling, which can
significantly reduce phototoxicity[14]. The procedure of sample preparation will be
simplified. Also, without the demand for dyes, the experiment cost will decrease. For
example, when conducting an experiment to study Mitochondria and DNA, without the
need for the corresponding dyes (TMRM and SYBR™ Gold), one can save up to 500

USD.
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Although we can get information about cellular structure from TL images, such data

lack distinct contrast compared to fluorescence images. Facing these issues, scientists

have come up with solutions from the perspective of computing, more specifically, deep

learning. As we know, huge advances in deep learning recently show its potential to

achieve significant success in image processing. Convolutional neural networks (CNNs),

one branch of deep learning, can learn non-linear relationships between source images

and target images, resulting in considerably improved performance for computer vision

tasks (classification, segmentation). Hence, with the help of CNNs, a method combining

the relative low-cost TL images with clear fluorescence images would be a useful tool for

observing subcellular structures.

To implement such tasks, Allen Institute for Cell Science and Google have

previously constructed the convolutional neural networks to successfully predict

fluorescence images from TL images[15], [16]. In their works, they trained the CNN

model with unlabeled images (TL images) and fluorescent-label images, trying to learn

relationships between each corresponding image. Consequently, the trained model can

eventually predict fluorescence images from new unlabeled images. In that way, the

phototoxicity and photobleaching problems can be avoided[15]. Moreover, without

labeling, they can lower the cost of sample preparation and simplify the procedure.

3
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Though the prediction works done by Allen Institute for Cell Science and Google
have addressed the 3D cell imaging thoroughly, their model cannot fit with our own AC16
data (Fig. 1.1). The reason is few of their works are focus on the mitochondria imaging,
especially in time-series images that could capture mitochondrial dynamics

Mitochondria Ground Truth Prediction

B ¥

Figure 1.1: Prediction of mitochondria structure from bright-field images of AC16 cells
by the “Mitochondria” model trained by Allen Institute for Cell Science[15].

As mentioned previously, we can gain many insights by studying the morphology

and dynamics of mitochondria. Therefore, in this research, we adopted and modified the

label-free U-Net method[15], [17] published by Allen Institute for Cell Science to train

and predict z-stack and time-series mitochondria-related fluorescent images from the TL

images. Using both confocal[18] and Airyscan[19] technology, we have improved the
4
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overall performance of the CNN models to the AC16 cardiac cell line images.

Section 1-2: Literature Review

Fully Convolutional Networks

Fully convolutional networks (FCNs)[20] generally consist of multiple layers which

are all convolutional layers, and are often used as semantic segmentation tasks. The term

“semantic segmentation” is a pixel-wise prediction for the reason that each pixel in an

image is classified according to its class. In the classical image classification task of CNN,

an input image is downsized via several convolutional layers and ends with fully

connected layers, and the output will be one of the predicted labels for that input image.

Unlike CNN, FCN replaces the fully connected layers with other convolutional layers,

resulting in images in smaller sizes. The upsampling technique is often used in this case.

Since the output images will be smaller than the input images due to convolution, to

achieve the goal of semantic segmentation, FCN implements the deconvolutional layers

(transposed layers) to increase the size of the result images. However, with only

upsampling from small size images (e.g., 2x2), the final heatmap will be rough because

the model loses spatial information during the convolution process. To solve the issue,

FCN fuses the output images with the previous output images from shallower layers.
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FCN is one of the most efficient machine learning tools for semantic segmentation

in the last decade. There are many extended applications and modifications based on FCN

all gaining huge success. For example, R-FCN[21] demonstrated a modified FCN that

combines pixel classification and object detection. Our current study uses the U-Net[17]

architecture which was based on FCN for image prediction. The underlying U-Net system

will be elaborated in the next section.

U-Net

U-Net[17] provides powerful semantic segmentation with two parts of convolutional

layers, including a contracting path to capture context and an expanding path to localize

information of each pixel. Similar to FCN structure, contracting path and expanding path

represent traditional convolutional layers and deconvolutional layers, respectively. There

are two primary differences between them: (1) In fusing step, unlike FCN which simply

adds the value of two outputs together, U-Net concatenates the channels of each output,

creating a larger size in channel-axis. (2) In most cases of biomedical images, there is

very little training data available. As a result, using data augmentation as preprocess is

necessary[22]. By applying elastic deformations to original training data, the network can

learn invariance which is especially important in biomedical image segmentation since

the most common variation in tissues and cells is deformation.

6

doi:10.6342/NTU202003983



A general CNN focuses on image classification where input is an image and output

is a label, and which is difficult to apply in most biomedical cases. The main purpose of

biomedical images is to not only distinguish whether there is a target but also localize the

area, which U-Net can easily apply. Hence, most biomedical images, e.g., MRI,

ultrasound, and microscope, take advantage of U-Net nowadays.

Label-free Prediction of Fluorescence images from TL images

In the paper by Ounkomol et al. (Allen Institute for Cell Science)[15], a label-free

method built from CNN-based U-Net architecture was introduced. The model can predict

3D fluorescent images directly from transmitted light images. Their prediction models

learn each relationship between TL and cell images for several subcellular structures (cell

membrane, nuclear envelope, DNA, mitochondria, microtubules, actin, ER, etc.). After

training, a single 3D TL input can then be applied to multiple subcellular structure models,

generating integrated images. In other sets of experiments, their method also can predict

classical 2D immunofluorescence (IF) images from electron micrographs (EM).

To further examine the performance of the architecture under different imaging

environments, they trained and tested the model with EM images and IF images from the

7
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same samples, but by using two different microscopes. Thus, these two sets of images are

not spatially aligned. It turned out that the model can successfully register an EM image

to a target IF image, suggesting this label-free tool can be adopted in diverse imaging

modalities.

In addition, they used the model trained on static images to predict fluorescence

time-series images. By applying their TL-to-fluorescence models to TL 3D time-series at

S5-minute intervals, the model can not only visualize subcellular structures but also

recognize the dynamics of mitotic events. As reported in the previous researches[13], [23],

phototoxicity occurs during a long period of acquisition of multi-label live cell

fluorescence images, which indicates serious challenges in obtaining this type of

information. Hence, their method prevented such problems from happening and extended

the duration on which cellular processes can be visualized.

In another recent paper published by Christiansen et al. from the Google team[16],

they built neural network models similar to the one proposed by Allen Institute for Cell

Science[15] to predict fluorescent labels in unlabeled images (TL or DIC) but using

different approaches. First, their model has a multi-scale input, including small and large

length-scale paths. For the small length-scale path, the model processes explicit detail

8
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near the center of the input. On the other hand, coarse information is processed via a large
length-scale path in a broad region around the center. Such multi-scale architectures have
been proof to be useful in computer vision works[24]. This approach helps the model
better learn the spatial relationship between labeled and unlabeled data. Second, they
trained the network with images of live cells treated with propidium iodide (PI), a dye
that labels dead cells. The network accurately distinguished a single dead cell from a mass
of live cells based on nuclear morphology. Last, they tried to predict specific subcellular
structures in different plating processes. To their surprise, the network could perform well
in conditions of low- and high- plating densities whereas the results are better under

conditions of low-plating densities.

However, neither of these models conducts the prediction work on high-resolution
microscope images. Moreover, although Allen Institute for Cell Science has dealt with
time-series 3D images, they used static 3D z-stack images as training data. Therefore, to
handle these issues, I adopted and modified the method published by Allen Institute to
further look into the structures of mitochondria, along with high-resolution time-series

and z-stack images.

Section 1-3: Specific Aims
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The overall workflow of our experiment design is elaborated in Fig. 1.2, with the

following specific aims:

Prediction

output

Minimize /
MSE 7/
Fluorescence | Enkalaialalaaia —_ =

target

Figure 1.2: The overall workflow of the experiment design.

Aim]1. High-Resolution Imaging

The high-resolution and high-contrast mitochondria images are acquired using a

Zeiss confocal microscope (LSM800) with a 1.40-NA, 63x objective, and Airyscan

option[19]. By optimizing labeling and image acquisition protocols, we could obtain fine

details of the mitochondria images, allowing our networks to learn relationships between

TL and fluorescent labels.

Aim2. Optimized U-Net Model for Mitochondrial Application

While acquiring input images in higher resolution, there will be more pixels in total

10
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for the network to train. For example, the optimal size of an Airyscan image is around

1800x1800 pixels comparing to the confocal images of 500x500 pixels. To efficiently

extract the information from the input, the original model[15] will be modified with

deeper layers to preserve extra features inside the images. The improvement of the model

and the proposed model architecture will be discussed in the next chapter.

Aim3. Specific Mitochondria Label Prediction with TL Input

The model trained by our TL microscopy images and fluorescence images has the

ability to predict the mitochondria label from TL inputs, which do not require fluorescent

dye labeling. This approach allows us to study morphology and dynamics of mitochondria

without facing problems like photobleaching and phototoxicity, and enable us to increase

the duration for imaging and monitoring mitochondrial structures.

11
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Chapter II: Methods and Materials

Section 2-1: Cell Culture and Labeling

AC16 Human Cardiomyocyte Cell Line (AC16) was used in the z-stack and time-
series microscopy image acquisition. The cells were seeded on a 30 mm glass-bottom
plate. For AC16, the culture media was the same as imaging media, which was
DMEM/F12 with 12.5% FBS and 1% antibiotic-antimycotic. The cell density was 250 to
500 thousand cells per plate. To stain the cells, AC16 was first incubated in the imaging
media with 100 nM Tetramethylrhodamine, methyl ester (TMRM) for 10 to 15 min, and
then with 2000x to 5000x SYBR Gold™ (Thermofisher) for 20 to 30 min. The cells were

washed with PBS and fresh imaging media before imaging.

Section 2-2: Cell Imaging

All the cells were imaged on a Zeiss microscope LSM800 with ZEN Blue 2.6
software and with a 1.40-NA, 63x objective. The cells were imaged in the microscopy
incubator with 5% CO> on the same day we stained them. For each training image, there
are a total of three channels with corresponding 8-bit (Confocal) or 16-bit (Airyscan) data:
transmitted light (bright-field), DNA and mitochondrial DNA labeled with SYBR Gold,
mitochondria labeled with TMRM. The image size for all images is 78 um * 78 pm, which

contained 1 to 5 cells of AC16 per image. Table 2.1 shows the imaging parameters for

12
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each imaging type.

Figure 2.1: The Zeiss Microscope LSM800 with Airyscan.

Imaging Type Acquisition = 488 nm laser ' 561 nm laser Bit Depth
5-second interval Con 2%, 660V 2%, 680V 8
15-minute interval Airy +Con | 0.2%, 700V | 0.2%, 760V 16
I-minute interval Airy + Con | 0.8%, 700V 1%, 750V 16
30-second interval Con 2%, 700V 1%, 760V 8

z-stack Con 2%, 660V 2%, 630V 8
HR z-stack (Airyscan) | Airy + Con 1%, 730V 1%, 750V 16
HR z-stack (Confocal) Con 2%, 700V 1%, 750V 8

HR: high-resolution; Airy: Airyscan; Con: confocal
Table 2.1: Imaging parameters for each experiment. Note that some acquisitions
combined two methods (Airyscan and confocal, Second column). The 488 nm laser was
for SYBR Gold (Third column). The 561 nm laser was for TMRM (Fourth column). The

upper part is time-series experiments and the lower part is z-stack experiments.

Time-series

In the 5-second interval acquisitions, each set was imaged for a total of about 5 min

13
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using only confocal microscopy. The acquisition settings for each channel were: 488 nm

laser at 2.00% of 10mW, with detector gain 660 V for SYBR Gold and 300 V for bright-

field; 561 nm laser at 2.00% of 10mM, with detector gain 680 V for TMRM. The images

were captured at a YX-resolution of 512 px * 512 px with a pixel scale of 0.152 um/px.

All time-series sets were composed of 64 frames with the same time interval.

In the long time interval acquisitions(15-minute), we choose the Airyscan detector

[19] to implement the imaging process. The cell was imaged by Airyscan for two channels:

SYBR Gold and TMRM, while the confocal microscope was only used for the bright-

field channel. With longer time interval, the total duration for this experiment was about

16 h for each set (total 64 frames). The acquisition settings for each channel were: 488

nm laser at 0.2% of 10mW, with detector gain 700 V for SYBR Gold; 561 nm laser at

0.2% of 10mM, with detector gain 760 V for TMRM; 488nm laser at 2.00% of 10mW,

with detector gain 300 V for bright-field. The images were also captured at a YX-

resolution of 512 px * 512 px with a pixel scale of 0.152 pm/px. All time-series sets were

composed of 64 frames with same time interval.

As for high-resolution time-series images, we used Airyscan and confocal detector

to conduct the experiment. Since in high-resolution condition, the exposure time of laser

14
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is much longer, to avoid the phototoxicity, we reduced the time-series set of 64 frames to

32 frames. For Airyscan images, the cell was imaged by Airyscan for both SYBR Gold

and TMRM channels and the bright-field images were obtained by switching to the

confocal microscope. The duration for high-resolution time-series Airyscan experiment

was around 32 min for each set of 1-minute interval (total 32 frames). The acquisition

settings for each channel were: 488 nm laser at 0.8% of 10mW, with detector gain 700 V

for SYBR Gold; 561 nm laser at 1.00% of 10mM, with detector gain 750 V for TMRM,;

488nm laser at 2.00% of 10mW, with detector gain 300 V for bright-field. The high-

resolution images were captured at a YX-resolution of 1834 px * 1834 px with a pixel

scale of 0.043 um/px. For confocal images, the cell was imaged by confocal detector for

all three channels. The duration for high-resolution time-series confocal experiment was

15 min for each set of 30-second interval (32 frames). The acquisition settings for each

channel were: 488nm laser at 2.00% of 10mW, with detector gain 700 V for SYBR Gold

and 300 V for bright-field; 561 nm laser at 1.00% of 10mM, with detector gain 760 V for

TMRM. The high-resolution confocal images were captured at a Y X-resolution of 917 px

* 917 px with a pixel scale of 0.085 pm/px

Z-stacks

In the 512 * 512 z-stack experiment, cells were imaged for up to 3 min on confocal

15
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microscope for 64 slices. The acquisition settings for each channel were: 488 nm laser at

2.00% of 10mW, with detector gain 660 V for SYBR Gold and 300 V for bright-field;

561 nm laser at 2.00% of 10mM, with detector gain 630 V for TMRM. The images were

captured at a YX-resolution of 512 px * 512 px with a pixel scale of 0.152 um/px. All z-

stacks were composed of 64 slices with an interval of 0.100 um.

For the high-resolution z-stack experiment, cells were imaged for up to 1.5 min on

the confocal microscope and up to 15 min on the Airyscan method. The acquisition

settings of the Airyscan method for each channel were: 488 nm laser at 1.00% of 10mW,

with detector gain 730 V for SYBR Gold; 561 nm laser at 1.00% of 10mM, with detector

gain 750 V for TMRM; 488nm laser at 2.00% of 10mW, with detector gain 300 V for

bright-field. The acquisition settings of the confocal method for each channel were:

488nm laser at 2.00% of 10mW, with detector gain 700 V for SYBR Gold and 300 V for

bright-field; 56 1nm laser at 1.00% of 10mM, with detector gain 750 V for TMRM. For

confocal microscope z-stack images, the pixel size is 917 px * 917 px with a pixel scale

of 0.085 pm/px; For Airyscan z-stack images, the pixel size is 1834 px * 1834 px with a

pixel scale of 0.043 pm/px. Due to the phototoxicity problem in high-resolution images,

all z-stacks were composed of 32 slices with an interval of 0.150 pm.
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Section 2-3: Data Preprocessing for Training and Evaluation

Structure Model 34 dimension Number of Resolution Number of
(Acquisition) Name data (train/test) slices (frames)
Mitochondria Ay Time-series (15 min) 90/30 512 *512 64

(Airyscan)

DNA Az Time-series (15 min) 90/30 512 *512 64

(Airyscan)

Mitochondria B Time-series (5 sec) 150/50 512 *512 64

(Confocal)

DNA B> Time-series (5 sec) 150/50 512 %512 64

(Confocal)

Mitochondria C Time-series (1 min) 47/20 1834 * 1834 32

(Airyscan)

DNA C Time-series (1 min) 47/20 1834 * 1834 32

(Airyscan)

Mitochondria D Time-series (30 sec) 60/15 917 *917 32

(Confocal)

DNA D, Time-series (30 sec) 60/15 917 *917 32

(Confocal)

Mitochondria E; Z-stack (0.100 um) 36/14 512 *512 64

(Confocal)

DNA E> Z-stack (0.100 pm) 36/14 512 * 512 64

(Confocal)

Mitochondria Fy Z-stack (0.150 um) 47/18 1834 * 1834 32

(Airyscan)

DNA F> Z-stack (0.150 pm) 47/18 1834 * 1834 32

(Airyscan)

Mitochondria Gy Z-stack (0.150 um) 47/18 917 *917 32

(Airyscan)

DNA Gy Z-stack (0.150 pm) 47/18 917 * 917 32

(Airyscan)

Mitochondria H Z-stack (0.150 um) 46/17 917 *917 32

(Confocal)

DNA H, Z-stack (0.150 pm) 46/17 917 * 917 32

(Confocal)

Table 2.2: 3D live cell imaging data used in this research. Each structure was imaged in
Airyscan or Confocal acquisition (Leftmost column). Each 3D image was composed in
the order of either “Length, width, height” or “Length, width, time” depended on the 3™
dimension (Third column). The total dataset was split into 75% training set and 25%
testing set (Fourth column). The number of resolution presented length * width (Fifth
column). The size of 3™ dimension is either 32 or 64 (Rightmost column). The abbreviated

name of each model was shown in the table (Second column).

Table 2.1 shows the data and the details we used to train and evaluate. Our models

are based on different types of data, including short-interval live cell time-lapse, long-
17
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interval live cell time-lapse, 3D live cell z-stacks, and their corresponding pairs in high-

resolution (512 * 512 vs 1834 * 1834). The data were split into 75% training sets and

25% testing sets, and then the training data were again split into 90% training sets and

10% validation sets. All multi-channel time-series, multi-channel z-stack data were

obtained by our Zeiss LSM800 microscope. For Airyscan, we must first utilize “Airyscan

process” function in ZEN Blue 2.6 to reconstruct the high-contrast image with 32 original

images before doing subsequent procedures. Note that to compare the result of high-

resolution Airyscan images (1834 px * 1834 px) with the result of confocal images (917

px * 917 px), Airyscan images were downscaled by a factor of two in YX dimension.

With the finished pairs, the model can be trained and evaluated to predict the tagged

subcellular structure pixelwise. All images were converted to floating-point and resized

via cubic interpolation for the purpose of having the same pixel scale in z-stacks (0.1pm

*0.1um * 0.1pm for original size and 0.15um * 0.15um * 0.15um for high-resolution).

Result images were 176 px * 176 px for original images, 396 px * 396 px for downscaled

high-resolution images, or 512 px * 512 px for high-resolution images in Y and X

respectively. For original z-stack and time-series, there will be 64 slices in the result; For

high resolution ones, there will be 32 slices in the result. Last, to diminish the difference

caused by illumination, pixel intensities of input and target images were improved by Z-
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score normalization. In the process of the Z-score normalization, we rescaled the data

intensities into a normal distribution with the mean of 0 and the standard deviation of 1.

This step is necessary to make our ML task well defined since the pixel intensities are not

measured in comparable absolute units.

Section 2-4: Model Architecture

Figure 2.2 shows the overall diagram of the convolutional neural networks model.

We adopt the method published by Allen Institute of Cell Science which is based on the

U-Net architecture [17]. The modified U-Net model proposed in this thesis is shown in

Figure 2.3.
1 32 32
-» = » =
64 ' 32 1
=» Ll
Do Do
twice twice
128 1 )
- =
Do Do
twice 256 ' twice 128 - Conv 3x3
? =
twiZE ' tvlu)ixo:e 256
Do 512 ! ) Transposed Conv 2x2

twice

Figure 2.2: The original diagram of CNNs. Note that each layer consists of convolutional
layer, batch normalization and ReLU function except the “concatenate” arrow and the
rightmost arrow. Patch size of input is 32 * 64 * 64 in this model. Figured adapted from
Ronneberger et al. Lecture Notes in Computer Science 234-241 (2015) [17] and
Ounkomol et al. Nature Methods (2018) [15].
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Our original model consists of different layers that perform three kinds of

convolution functions: convolutional layers with a stride of 2 pixels ( The orange arrows

in Fig. 2.2), convolutional layers with a stride of 1 pixel ( The brown arrows in Fig. 2.2),

and deconvolutional layers with a stride of 2 pixels (The blue arrows in Fig. 2.2), each

comes with a batch normalization[25] and ReL.U function. To keep the size of the output

layers the same as input size, the horizontal arrows represent the convolution layers that

are 3 * 3 pixels with a stride of 1-pixel using zero-padding on input. For the down arrows,

they are 2 * 2 pixels convolution layers with a stride of 2 pixels in order to halve the size

of the output. Last, the up arrows represent the deconvolution (transposed convolution)

layers that are 2 * 2 pixels with a stride of 2 pixels for the purpose of doubling the output

size. Note that in the last layer of the model, there are no ReLU function and batch

normalization. The number of output channels in each layer are indicated in the Figure

2.2.

As mentioned in Section 1-2, the purpose of the left-hand side of the U-Net is to

extract features from the input data while the right-hand side stands for reconstructing

images from the features of the input. Since in every layer we would perform batch

normalization[25] and ReLU function right after the convolution function, the output of
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convolutional layer is considered reliable in pixel intensities.

To further improve the performance of high-resolution images, the bigger patch size
is needed. Hence, we modified the original model by adding more convolutional layers,
creating a deeper neural network which can extract more features from input data. As
shown in Figure 2.3, there is one more arrow that goes down, meaning the model will
keep doing convolution to halve the size. Therefore, with such fine details, we can deal

with a bigger patch size without losing information.

1 32 32

» = » =
o4 $ 2
L d L d
Do Do
twice twit:a\6
L
128 L]
=-» =
Do Do
twice 256 1 twice 128
L L d
D Conv 3x3
twice 512 1 i 256 g
Do & D 512
t - L] twide
Do 1024 1 ) Transposed Conv 2x2
fwice

Figure 2.3: The diagram of modified CNNs. The difference between this model and the

original one is highlighted in red rectangle. Patch size of input is 32 * 128 * 128 in this
model.

Our model was initially trained on a GeForce GTX 1080Ti with 12 GB RAM, with
the patch size of 64 px * 64 px * 32 px. As patch size increases, we trained the model on

several Tesla V100s with 32 GB RAM, using data parallelism as well. The GPU device
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Tesla V100 was provided by Taiwan Computing Cloud (TWCC). For the details of

TWCC, please refer to the TWCC website (https://www.twcc.ai/). All the patches were

randomly subsampled across all training images. The training procedure updated its

parameters via stochastic gradient descent to minimize the mean squared error. With a

learning rate of 0.001 for different batch iterations (depends on the size of training data),

we used the Adam optimizer[26] as an optimization method. Choosing a batch size of 24

for our 3D model, the total training progress took about 5 hours in our workstation and 4

hours in TWCC for 10000 iterations and so on. For prediction tasks, it takes 1 second for

asingle 3D image (XYZ or XYT) whose input pixel size is 512 px * 512 px, and 5 second

for a single 3D image whose input pixel size is 917 px * 917 px. Both original and

modified model training pipelines were implemented in Python, using the PyTorch

package[27]. Table 2.3 shows the detail of hyperparameters for each corresponding

model.

Model Iteration Patch size Architecture
Number @ (ZXY or TXY) Depth

A1 (Airyscan, 15min) 20000 32 %64 * 64 4
B (Confocal, 5sec) 20000 32 %64 * 64 4
Ci2 (Airyscan, 1min, HR) 10000 32 * 128 * 128 5
D12 (Confocal, 30sec, HR) 10000 32 %64 * 64 4
E1,> (Confocal, z-stack) 10000 32 %64 * 64 4
Fi. (Airyscan, z-stack, HR) 10000 32 %128 * 128 5
G2 (Airyscan, z-stack, DS) 10000 32 %64 * 64 4
Hi> (Confocal, z-stack, HR) | 10000 32 %64 * 64 4

HR: high-resolution; DS: downscaling
A1, Bi...H;: Mitochondria model; A B>...Hz: DNA model
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Table 2.3: Hyperparameters used in our experiment. The iteration numbers were
depended on the number of training images (Second column). The dimensions of the
patch were either ZXY or TXY (Third column). Architecture Depth referred to the
different models (4: original model from Allen Institute, 5: modified model). The upper
part is time-series models and the lower part is z-stack models. The abbreviation of each

model is shown in Table 2.2.

Section 2-5: Model Performance Analysis
For our model performance, we choose the Pearson correlation coefficient to

quantify the accuracy:

o SE-D0-Y)
I - 0730 - 7)?

(2.1)

Here y stands for the pixel intensities of the model’s prediction (output), and x stands

for the ground truth test images. The closer x is to y, the » value will become bigger. It is

intuitive that as the size of the signal increases, the size of random fluctuations will also

increase, which consequently leads to degrading in model performance. For example, in

some cases of the high-resolution image experiment, the model itself cannot classify

between background noise and labeled target. Hence, the result may be good in human

observation but bad in Pearson correlation coefficient.
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Chapter III: Results

In this chapter, we will present the predictions and the performance from TL images
using different models. In Section 3-1, we compared the short interval time-series
predictions of mitochondria and DNA with the long interval predictions. In Section 3-2,
we presented the z-stack predictions using our model and compared the performance with
the pretrained model published by Allen Institute for Cell Science. In Section 3-3, we
compared the high-resolution (1834 *1834) predictions with the normal-resolution (512
*512) predictions. In Section 3-4, we compared the performance of the models trained by
images acquired using different methods: Airyscan microscopy and confocal microscopy.
Finally, in Section 3-5, we constructed a general model that was trained with both time-

series and z-stack images.

Section 3-1: Time-series Prediction

Fig. 3.1 and Fig. 3.2 show that the model could predict mitochondria and DNA from
the transmitted light images. In the mitochondrial structure predictions, the model
successfully classified between tubular mitochondria and background. But mitochondria
network clustered around nucleus are hardly classified due to the overlap of structure in
transmitted light. On the other hand, DNA prediction was mostly overlapped with

mitochondria except regions of nucleus. However, the structure of mtDNA is not as clear
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as shown in the fluorescence-labeled images. Fig. 3.3 shows the Pearson correlation

coefficient () between ground truth (target) and predicted image from our model. In the

experiment of long intervals, slices between each time-series image lack of location

relationships, resulting in low performance.

5-second Interval
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Figure 3.1: (a) Fluorescence prediction from transmitted light (5-second interval). The
left column is the same single t-slice of a 3D transmitted light input image. The middle
column is mitochondria ground-truth (top) and DNA ground-truth (bottom). The right
column is images predicted by corresponding models (mitochondria model and DNA
model). The example images are selected from a larger pool of test images. (b) Time-
series Prediction of mitochondria and DNA from transmitted light (top) and the ground

truth of them (bottom). The interval between each pair is 5-second.

15-minute Interval

(@) Fluorescence prediction from transmitted light

2 |
4 v

(b) Time-series results (Top: Prediction; Bottom: Target)
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Figure 3.2: (a) Fluorescence prediction from transmitted light (15-minute interval). The
left column is the same single t-slice of a 3D transmitted light input image. The middle
column is mitochondria ground-truth (top) and DNA ground-truth (bottom). The right
column is images predicted by corresponding models (mitochondria model and DNA
model). The example images are selected from a larger pool of test images. (b) Time-
series Prediction of mitochondria and DNA from transmitted light (top) and the ground

truth of them (bottom). The interval between each pair is 15-minute.
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Figure 3.3: Prediction performance across different time intervals of time-series image

acquisitions.

Section 3-2: Z-stack Prediction

Fig. 3.4 shows that the results were successfully predicted from transmitted light

images. Compared with previous works done by Allen Institute for Cell Science[15], our

z-stack prediction focused on mitochondria and DNA with higher magnification.

Although the prediction performance of our model was slightly lower than theirs (Fig.

3.5a), our results provided more fine details about mitochondria structure under such

magnification (1.40-NA, 63x objective in our confocal microscope vs 1.25-NA, 100x

objective in spinning disk microscope from Allen Institute). It is noted that under such

magnfication, the noise and the dust will affect the performance siginicantly, resulting in

bigger error bar (Fig. 3.5a).
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Figure 3.4: Fluorescence prediction from transmitted light (z-slice interval of 0.29um).

The left column is the same single z-slice of a 3D transmitted light input image. The

middle column is mitochondria ground-truth (top) and DNA ground-truth (bottom). The

right column is images predicted by corresponding models (mitochondria model and

DNA model). The example images are selected from a larger pool of test images.

(a)
1.0

Mitochondria

0.8 1

o] T BB

0.4 1

0.2 1

0.0 . T
Allen Institute Our Model

1.0

(b)

0.8

0.6

0.4 -

0.2

=

Mitochondria
DNA

0.0

z-stack

Figure 3.5: (a) Prediction performance on mitochondria across different models. (b)

Prediction performance on different subcellular structures.

Section 3-3: High-resolution Image Prediction (Without downscaling)
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Both Fig. 3.6 and Fig. 3.7 shows that the model could predict the subcellular

structures from transmitted light images. However, the results were blurry because the

background noise was also magnified under high-resolution TL images. Since the deep

neural network structure is susceptible to blur and noise distortion[28], such magnified

noise will lead to poor performance of the model. Fig. 3.8 shows that the average Pearson

correlation coefficient (7) of high-resolution decreased in both time-series and z-stack.

Time-series

Figure 3.6: High-resolution fluorescence prediction from transmitted light (1-minute
interval). The left column is the same single t-slice of a 3D transmitted light input image.
The middle column is mitochondria ground-truth (top) and DNA ground-truth (bottom).
The right column is images predicted by corresponding models (mitochondria model and

DNA model). The example images are selected from a larger pool of test images.

Z-stack
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Figure 3.7: High resolution fluorescence prediction from transmitted light (z-slice interval

of 0.15um). The left column is the same single z-slice of a 3D transmitted light input

image. The middle column is mitochondria ground-truth (top) and DNA ground-truth

(bottom). The right column is images predicted by corresponding models (mitochondria

model and DNA model). The example images are selected from a larger pool of test

images.

(a)
1.0

Mitochondria
[ DNA
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00 T T
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Figure 3.8: (a) Time-series prediction performance across high resolution (HR, 1834

*1834) and original resolution ( Original, 512 * 512). (b) Z-stack prediction performance

across HR and original resolution.
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Section 3-4: Airyscan Prediction and Confocal Prediction

In both time-series and z-stack, the model trained on images using Airyscan method
could predict mitochondria structure with fewer errors (Fig. 3.9a, Fig. 3.10a). However,
the performance on DNA structure (Fig. 3.9a, Fig. 3.10a) was poor since Airyscan method
will reduce the intensity of nucleus whose intensities were already low. The intensity of
mtDNA remained the same or increased in the meantime. Consequently, this process will

result in irrelevant pairs between TL input images and fluorescence target images.

In contrast, Fig. 3.9b and Fig. 3.10b show that the model trained on images using
confocal method could predict mitochondria and DNA structures with higher accuracy.
Because the images acquired using confocal microscopy provide high-contrast and
relatively high-resolution without any imaging process function, such methods ensured
the high-relevant relationship between TL input images and fluorescence target images.
Fig. 3.11 shows that in both time-series and z-stack, the Pearson correlation coefficient

(r) of the confocal imaging method was better than that of the Airyscan imaging method.

Table 3.1 shows the overall performance metrics for the models mentioned in this
chapter. The performance metrics were composed of the Pearson correlation coefficient

(r) for each subcellular structure, mitochondria and DNA. Compared with other models,
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the model trained with the images acquired using high-resolution confocal microscopy

has superior performance in both time-series (D12) and z-stack (Hi2). The details of the

Pearson correlation coefficient as shown in Figure 3.12, includes the performance of each

testing set in the model of Hi ».

Time-series

doi:10.6342/NTU202003983



Figure 3.9: (a) Time-series fluorescence prediction from transmitted light using Airyscan.
(b) Time-series fluorescence prediction from transmitted light using confocal microscopy.
In both (a) and (b), the left column is the same single t-slice of a 3D transmitted light
input image. The middle column is mitochondria ground-truth (top) and DNA ground-
truth (bottom). The right column is images predicted by corresponding models
(mitochondria model and DNA model). The example images are selected from a larger

pool of test images.

Z-stack

(a) Airyscan

Figure 3.10: (a) Z-stack fluorescence prediction from transmitted light using Airyscan. (b)
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Z-stack fluorescence prediction from transmitted light using confocal microscopy. In both
(a) and (b), the left column is the same single t-slice of a 3D transmitted light input image.
The middle column is mitochondria ground-truth (top) and DNA ground-truth (bottom).
The right column is images predicted by corresponding models (mitochondria model and

DNA model). The example images are selected from a larger pool of test images.

(a) (b)
1.0 1.0

Mitochondria Mitochondria
DNA DNA

0.8 A T 0.8 A é
] 0.6 B % ] 0.6 % %

0.4 1 0.4 1
0.2 1 0.2 -
0.0 . . 0.0 . .
Airyscan Confocal Airyscan Confocal
Time-series Z-stack

Figure 3.11: (a) Time-series prediction performance across different imaging methods. (b)

Z-stack prediction performance across different imaging methods.

Dataset: LSM800 Microscope
Images

Models | Mitochondria | DNA
Ain 0.4020 0.2032
B2 0.4956 0.3363
Ci2 0.4989 0.2988
Di» 0.6431 0.4746
Ei 0.6488 0.4703
Fiz 0.5633 0.3966
G2 0.5879 0.4361
Hio 0.7312 0.5273

Table 3.1: Performance metrics for the considered models trained and tested using the
microscope images as training and testing datasets, respectively. The upper part (A, B, C,
D) is for the time-series prediction and the lower part (E, F, G, H) is for the z-stack
prediction. All the model experiments are described in the text. The numbers in the table

are the values of Pearson correlation coefficient. The abbreviation of each model is shown
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in Table 2.2.
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Figure 3.12: Summary results of methods used on this chapter. (a) The performance
between different models. (b) The performance from the model with best accuracy (The

total number of testing sets are 17). The abbreviation of each model is shown in Table 2.2.

Groups:
A1 (Mitochondria, Airyscan, 15min) Az (DNA, Airyscan, 15min)
B1 (Mitochondria, Confocal, 5sec) B> (DNA, Confocal, Ssec)

Ci (Mitochondria, Airyscan, 1min, HR) C> (DNA, Airyscan, 1min, HR)
D; (Mitochondria, Confocal, 30sec, HR) D> (DNA, Confocal, 30sec, HR)
E1 (Mitochondria, Confocal, z-stack) E> (DNA, Confocal, z-stack)

F1 (Mitochondria, Airyscan, z-stack, HR) F> (DNA, Airyscan, z-stack, HR)
G1 (Mitochondria, Airyscan, z-stack, DS) G2 (DNA, Airyscan, z-stack, DS)
H; (Mitochondria, Confocal, z-stack, HR)  H» (DNA, Confocal, z-stack, HR)
HR: high-resolution, DS: downscaling
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Section 3-5: Prediction from General Model

In this section, we combined time-series images with z-stack images to train a

general (combined) model that can implement in both time-series and z-stack image

segmentation tasks. The combined dataset we used to train the model is the same as those

we used to train D12 model and H; > model. Besides, D12 and Hi 2 were also the models

we used to evaluate the performance over the general model later on.

Both Fig. 3.13 and 3.14 show that the predictions were successfully conducted in

their corresponding models. The difference of the predictions between the z-stack model

and the general model was a bit to none, indicating that the general model has almost the

same performance as the z-stack model. On the other hand, the difference of the

predictions between the time-series model and the general model was more obvious,

suggesting that the general model functions worse in the time-series prediction compared

to the z-stack prediction.

Fig 3.15 shows the overall performance of each model across different prediction

tasks. Note that the predictions from their corresponding models could reach better

performances (Combined to combined, time-series to time-series, etc.). In addition, the

general (combined) model had relatively fine performance in all three tasks.
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Time-series

Time-series Model » 5 ‘.. : ) Combined Model

Figure 3.13: (a) Fluorescence prediction from transmitted light across the time-series
models and the combined models. The left column is the same single t-slice of a 3D
transmitted light input image. The second column is mitochondria ground-truth (top) and
DNA ground-truth (bottom). The third column is images predicted by the time-series
models. The right column is images predicted by the combined models. The example
images are selected from a larger pool of test images. (b) The overlap predictions of each
set (Left: Target, Middle: Time-series model, Right: Combined Model).
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Figure 3.14: (a) Fluorescence prediction from transmitted light across the z-stack models

and the combined models. The left column is the same single z-slice of a 3D transmitted
light input image. The second column is mitochondria ground-truth (top) and DNA
ground-truth (bottom). The third column is images predicted by the z-stack models. The
right column is images predicted by the combined models. The example images are
selected from a larger pool of test images. (b) The overlap predictions of each set (Left:
Target, Middle: Z-stack model, Right: Combined Model).
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(a) Combined Dataset Prediction

(b) Time-series Prediction
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Figure 3.15: (a) Combined dataset prediction performance across different model types.

(b) Time-series prediction performance across different model types. (c¢) Z-stack

prediction performance across different model types.
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Chapter IV: Discussion

Section 4-1: Label-free Prediction on Mitochondria

The methodology presented in this research provides potential ways to analyze and
study mitochondrial structure and dynamics in many aspects. Like previous works done
by the Allen Institute for Cell Science[15] and Google[16], it could reduce time sample
preparation and cell labeling, eliminating problems of phototoxicity and photobleaching.
Moreover, there are two major improvements in our research: (1) Label-free prediction
of time-series fluorescence images from TL images. Unlike the time-series prediction
from Allen Institute for Cell Science whose training data was static cell images, we used
live cell time-series images as our training data. In this way, the correlation between the
time-series prediction and actual cell movement will be stronger. As mentioned in Section
1.2, the phototoxicity often happens in long-duration live cell fluorescence imaging,
building a barrier for researchers to obtain time-series information. Therefore, our model
provides an alternative method to visualize cellular processes with longer timescales. (2)
High-resolution prediction from confocal and Airyscan images. Our model was trained
with confocal and Airyscan images which provide fine details of mitochondria. Although
the prediction performance may drop slightly, such details are valuable for researchers to

observe the morphology and dynamics of mitochondria and further analyze them.
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Deep learning has been applied in microscope images in recent years, achieving
advances in segmentation and classification. For example, using segmented images of
simple cells to classify its shape[29], and segmenting cells from bright-field z-stacks[30].
Our research on microscope images using deep learning may contribute to image-based
tasks, such as long-time-series observation of tissues or cells[13]. As related works
demonstrate the possibility to predict from TL images[15], [16], there is the chance that

such deep learning techniques can be applied to other biomedical image tasks.

Section 4-2: Result Analysis

Beside the predictions on Mitochondria and DNA, there were also some factors that
affect the model performance. First, to test the effect of number of training images (input
data), we trained the model with different numbers of training images, from 2 to 46. The
other hyperparameters were remained the same. The dataset used in this experiment was
the z-stack confocal images with the resolution of 917 * 917 pixels, which was the same
used in the model H;. Fig. 4.1 shows the performance on different numbers of training
images. It is obvious that as the number of training images increases, the overall accuracy
will improve. However, the performances between 32 and 46 are almost the same,

indicating that increasing dataset is not cost-effective to improve the model performance.
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Figure 4.1: Prediction performance across different number of training images.

Second, to test whether the photobleaching will affect the model performance, we
evaluated the accuracy between images of different time, from the first to the last. The
dataset used in this experiment was the time-series confocal images with the resolution
of 917 * 917 pixels, which was the same used in the model D1,. Fig. 4.2 shows the
performance on images of different time. The accuracy in both mitochondria and DNA
decreased slightly after long time of imaging. This suggested that the model performance

was affected by the photobleaching problem occurred in long-time imaging.

Third, to validate whether the z-stack model can be used in predicting time-series
images and thus there is no need for the time-series model, we used two models (Hi > and
D12) which were previously trained with different types of images (z-stack and time-

series) to do time-series prediction. Fig. 4.3 shows that the model trained with the time-
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series images could achieve better accuracy on the task of predicting time-series images

compared to the model trained with the z-stack images. Hence, it is noted that to get better

prediction results, the training and the testing images sharing same imaging parameters

are recommended.
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Figure 4.2: Prediction performance across images of different time.
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Figure 4.3: Time-series prediction performance across different model types.
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Last, the patch size of input data will also affect the prediction. Hence, we trained

the model with different patch sizes to evaluate the performance. Here, we used the same

model architecture adapted from Allen Institute. The dataset used in this experiment was

the z-stack confocal images with the resolution of 917 * 917 pixels, which was the same

used in the model H;. Fig. 4.4 shows that as the patch size increases, the model

performance will also improve. Nevertheless, the performance on patch size of 128 was

poorer than that on patch size of 64, indicating that increasing the patch size will not lead

to better performance unless we modify the architecture of the model.
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Figure 4.4: Prediction performance across different patch sizes.

Section 4-3: Experimental Difficulties

We faced several difficulties during our experiments. First, the Airyscan microscopy
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method could not combine with TL microscopy method in the same experimental step.

The original system of ZEN Blue 2.6 did not support such acquisition function. To solve

this issue, we used “Experiment Designer” inside ZEN Blue 2.6 to create multi-

experimental blocks that separate Airyscan and TL microscopy acquisitions into different

blocks. In that way, we could acquire TL images and their corresponding Airyscan images

simultaneously.

Second, in the experiment of long interval time-series imaging, the cells may move

out of the visual field and the color will fade. To deal with the color fading problem, we

added 1% antibiotic-antimycotic in each cell medium. But for the cell moving problem,

we have not overcome it for yet. The potential solution is to fix the cells with formalin

adding into the medium.

Third, for most Airyscan experiments, the acquisition time was so long that kills the

cells. To solve the issue, we came up with two possible solutions: (1) Reduce the laser

intensity of TMRM channel and SYBR Gold channel. In this way, cells would survive

under the acquisition of the Airyscan method. For example, in our time-series experiment

of the 15-minute interval, we reduced the intensity of the laser from 1% to 0.2%. (2)

Reduce the slices (z-stack) or frames (time-series) of the experiment. In high-resolution
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imaging acquisition, we reduced the original 64 slices of z-stack to 32 slices (64 frames

of time-series to 32 frames), which can accelerate the total acquisition time, increasing

the chance that cells can survive.

Last, in time-series experiments, the water vapor will accumulate on the upper cover

of the plate after long-time imaging, resulting in blurs and darkness on TL images. Such

noise problem will affect the accuracy of the prediction as we mentioned in Section 3.3.

The solution, for now, was to remove the upper cover during the experiment. This move

may cause pollution of cells, which needs further improvement and alternative solutions

in the future.

Section 4-4: Limitations

The method in this research exists its limitations. First, with supervised machine

learning, the prediction performance depends on the information contained in input data.

Without clear and correlated TL and fluorescence input, the model cannot learn a

relationship between them. For example, in the case of DNA prediction on different

conditions, the performance was not good as mitochondria due to the invisibility of

mtDNA on TL images and the corresponding low association between TL and

fluorescence images of DNA.
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Second, the quantity and quality will be key factors that influence our model

performance. In most of our experiments, the training data were insufficient since the

training process can reach low loss in the training set but unstable loss in the validation

set. Besides, in live cell imaging, especially in high-resolution and time-series, there were

some dust and water spots on TL images after long time. This will then become the noise

on the input data, resulting in poor model performance. The possible solution is to do

some denoise procedures before feeding them into the model.

In addition, the model cannot perform as well with inputs of different cellular

morphologies and different imaging parameters. In most of our testing sets, the

predictions with low Pearson correlation coefficients were those with abnormal shapes.

The same issue happened when we used the model from Allen Institute[15] trained with

hiPSC to predict our own data (AC16). On the other hand, the prediction from the TL

images acquired with imaging parameters that were the same as those used to train the

model can achieve the highest accuracy; The prediction from the TL images with different

parameters will provide poor results undoubtedly. For instance, the predictions from the

TL images acquired with 5-second time interval can achieve ideal performance using the

model with 5-second time interval training sets, but achieve bad performance using the
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model with 15-minute time interval.

Last, as we know, the model performance can be improved by modifying network

architectures and hyperparameters, but it is difficult to understand how such

modifications will affect the performance. In our experiment design, there are two

networks (Fig. 2.2 and Fig. 2.3) and several hyperparameters need to be decided: patch

size, number of iteration, batch size, etc. These all will affect the performance of the

model. The only way to find out whether the changes improve the performance is to finish

each experiment completely, which spends plenty of time. Hence, having a

comprehensive understanding of the functions inside the model will be critical for future

improvement.

49

doi:10.6342/NTU202003983



Chapter V: Conclusion and Future Work

This research constructs specific models that provides time-series, z-stack
predictions of Mitochondria structures with TL images from Airyscan and confocal
microscopy. In the confocal experiments, prediction results show that both the time-series
and z-stack models can achieve relatively fine performance under an interval of short-

time or thin z-stack.

To further improve the overall performance, there are some future directions: (1)
Increase the total number of TL images and fluorescence images. This can be done by
data augmentation such as image rotation or distortion. (2) Data preprocessing. With more
stages of preprocessing, such as Salt-and-pepper noise reduction, dust artifact removal,
and flat field correction, we can ensure the quality of the training data. (3) Model
interpretation. From another point of view, we can try to open the black box of the model,

understanding the principle of its prediction work.

Notwithstanding the limitations existing in our presented methodology, this study
does suggest an alternative approach in broader biological imaging areas where it may be

an opportunity for a breakthrough.
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