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摘要 

近年來顯微鏡技術的快速發展，讓科學家們能以更微觀的角度觀察細胞及細

胞內的結構。在這之中，螢光顯微鏡因為能夠透過針對特定胞器進行螢光染色，藉

此來觀察活細胞內的胞器活動，因而成為現今觀測活細胞時所主要使用的技術。然

而透過雷射激發螢光的方式卻容易產生光漂白或是光毒性等問題，造成觀測上的

困難。相比之下，單純的穿透光照射，雖然無法清晰看到細胞結構等細節，但便宜、

不用染色的優點，讓它得以有不同的用途。本篇論文使用我們實驗室所拍攝的

AC16 心臟細胞穿透光及螢光影像，透過深度學習的方法並且採納 Allen Institute for 

Cell Science 發表的模型及方法來訓練，來實現三維及時間序列的螢光影像預測。

相對於傳統的機器學習方法，卷積神經網路等深度學習方法近年來成功在影像辨

識及切割上取得重大成果。因此，能夠透過訓練類似的神經網路模型，學習穿透光

與螢光影像的相關性，最後成功從新的穿透光影像預測出其對應的螢光影像。在這

裡，我們的實驗將著重在使用共軛焦顯微鏡及 Airyscan 激光共聚焦顯微鏡所拍攝

的高解析粒線體影像及其 DNA影像，進行不同條件（三維、時間序）的預測。總

體來說，有了穿透光預測的螢光影像結果，將能有效縮短未來準備樣本的時間、增

加細胞在螢光顯微鏡下可供觀測的時間，並讓研究者能更仔細的分析粒線體及粒

線體 DNA的形狀與動態。 

 

關鍵字：粒線體結構、卷積神經網路、U-Net、顯微鏡影像預測、三維螢光影像、

時間序列螢光影像 
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Abstract 

Advancements in microscopic techniques allow insight into the world of cells and 

cellular structure. One such innovation is fluorescence microscopy, which enables us to 

analyze the subcellular structure of a living cell with the advantage of specific labeling. 

However, this technique comes with the potential problem of phototoxicity. The presence 

of advantage and disadvantage also holds for transmitted light microscopy (TL), which is 

a low-cost and label-free technology that nonetheless fails to easily distinguish targeted 

subcellular objects. In this thesis, we adopted the label-free method developed by the 

Allen Institute of Cell Science in using our TL microscopic images of cardiac myocyte-

derived cell line AC16 to train and predict 3D (z-stack) and time-series fluorescence 

images. Convolutional neural networks (CNNs) have shown significant success in image 

recognition and segmentation compared with traditional machine learning methods. 

Based on a CNN-like U-Net architecture, the model can effectively predict fluorescence 

images from new TL input by learning the relationships between live-cell TL and 

fluorescence images for different kinds of subcellular structures. We specifically focused 

on building corresponding models of subcellular mitochondrial structures using the 

aforementioned CNN technology and compared the prediction results derived from 

confocal microscopic, Airyscan microscopic, z-stack, and time-series images. With the 

multi-model combined prediction, it is possible to generate integrated images through 
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only TL input, reduce the time required for sample preparation, increase the time scales 

to enable visualization and measurement, and understand the morphology and dynamics 

of mitochondria and mtDNA. 

 

Keywords: mitochondrial structure; convolutional neural networks; U-net; microscope 

image prediction; 3D fluorescence images; time-series fluorescence images 
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Chapter Ⅰ: Introduction 

Section 1-1: Background and Motivation 

Mitochondria are dynamic organelles that regulate cellular energy, function, cell fate, 

and survival[1]. The mitochondrial morphology is corresponded with the metabolic state 

and varies during different tasks such as cell division and differentiation[2]. In addition, 

mitochondria morphology and function can reflect the cellular health state, which makes 

them an excellent object for scientists to evaluate cell health. Common diseases such as 

neurodegenerative diseases, cancer and diabetes, all observed in changes of mitochondrial 

morphology and dynamics[3]–[5]. Researchers have also used the mitochondria 

phenotypes to distinguish tumor types and classify them[6], [7]. 

 

Because of the importance lying in mitochondria, it will be a cinch to further analyze 

and quantify changes in their dynamic behavior and morphology. Traditional cell imaging 

used fixed samples to conduct experiments, which cannot help researchers reveal the 

dynamism of mitochondria[8]. Hence, the researchers started to use live cell imaging to 

observe the details of cellular substructure decades ago. Such techniques are being 

improved over time to further help understand the structure of these organelles. For 

example, in the paper by Jevtic et al.[9], structured illumination microscopy (SIM) was 

used to track mitochondrial nucleoids in SYBR Gold labeled live cells. By comparing 
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each frame of SIM time-lapse images, they can calculate the distance between nucleoid 

positions with algorithms. However, most live-cell imaging methods present some 

restrictions. 

 

The technique of fluorescence microscopy has been adopted in live-cell imaging in 

the past decade, and indeed achieves big progress such as performing confocal time-lapse 

and z-stack imaging in live cells[10]. Fluorescence microscopy has advantages of 

resolving subcellular structure (e.g. mitochondria, nucleus, etc.) in living cells by specific 

labeling, but it needs extra technical instrumentation and the sample preparation is time-

consuming. In addition, the challenge of photobleaching and phototoxicity emerged when 

it comes to both z-stack and time-lapse imaging, creating a tradeoff between quality 

(image resolution) and timescales available for live cells[11]–[13]. In contrast, 

transmitted light microscopy (TL), e.g., bright-field, DIC, requires no labeling, which can 

significantly reduce phototoxicity[14]. The procedure of sample preparation will be 

simplified. Also, without the demand for dyes, the experiment cost will decrease. For 

example, when conducting an experiment to study Mitochondria and DNA, without the 

need for the corresponding dyes (TMRM and SYBRTM Gold), one can save up to 500 

USD. 
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 Although we can get information about cellular structure from TL images, such data 

lack distinct contrast compared to fluorescence images. Facing these issues, scientists 

have come up with solutions from the perspective of computing, more specifically, deep 

learning. As we know, huge advances in deep learning recently show its potential to 

achieve significant success in image processing. Convolutional neural networks (CNNs), 

one branch of deep learning, can learn non-linear relationships between source images 

and target images, resulting in considerably improved performance for computer vision 

tasks (classification, segmentation). Hence, with the help of CNNs, a method combining 

the relative low-cost TL images with clear fluorescence images would be a useful tool for 

observing subcellular structures. 

 

 To implement such tasks, Allen Institute for Cell Science and Google have 

previously constructed the convolutional neural networks to successfully predict 

fluorescence images from TL images[15], [16]. In their works, they trained the CNN 

model with unlabeled images (TL images) and fluorescent-label images, trying to learn 

relationships between each corresponding image. Consequently, the trained model can 

eventually predict fluorescence images from new unlabeled images. In that way, the 

phototoxicity and photobleaching problems can be avoided[15]. Moreover, without 

labeling, they can lower the cost of sample preparation and simplify the procedure. 
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 Though the prediction works done by Allen Institute for Cell Science and Google 

have addressed the 3D cell imaging thoroughly, their model cannot fit with our own AC16 

data (Fig. 1.1). The reason is few of their works are focus on the mitochondria imaging, 

especially in time-series images that could capture mitochondrial dynamics 

 

Mitochondria Ground Truth Prediction 

  

Figure 1.1: Prediction of mitochondria structure from bright-field images of AC16 cells 

by the “Mitochondria” model trained by Allen Institute for Cell Science[15]. 

  

As mentioned previously, we can gain many insights by studying the morphology 

and dynamics of mitochondria. Therefore, in this research, we adopted and modified the 

label-free U-Net method[15], [17] published by Allen Institute for Cell Science to train 

and predict z-stack and time-series mitochondria-related fluorescent images from the TL 

images. Using both confocal[18] and Airyscan[19] technology, we have improved the 
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overall performance of the CNN models to the AC16 cardiac cell line images. 

 

Section 1-2: Literature Review 

Fully Convolutional Networks 

 Fully convolutional networks (FCNs)[20] generally consist of multiple layers which 

are all convolutional layers, and are often used as semantic segmentation tasks. The term 

“semantic segmentation” is a pixel-wise prediction for the reason that each pixel in an 

image is classified according to its class. In the classical image classification task of CNN, 

an input image is downsized via several convolutional layers and ends with fully 

connected layers, and the output will be one of the predicted labels for that input image. 

Unlike CNN, FCN replaces the fully connected layers with other convolutional layers, 

resulting in images in smaller sizes. The upsampling technique is often used in this case. 

Since the output images will be smaller than the input images due to convolution, to 

achieve the goal of semantic segmentation, FCN implements the deconvolutional layers 

(transposed layers) to increase the size of the result images. However, with only 

upsampling from small size images (e.g., 2x2), the final heatmap will be rough because 

the model loses spatial information during the convolution process. To solve the issue, 

FCN fuses the output images with the previous output images from shallower layers.  
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 FCN is one of the most efficient machine learning tools for semantic segmentation 

in the last decade. There are many extended applications and modifications based on FCN 

all gaining huge success. For example, R-FCN[21] demonstrated a modified FCN that 

combines pixel classification and object detection. Our current study uses the U-Net[17] 

architecture which was based on FCN for image prediction. The underlying U-Net system 

will be elaborated in the next section. 

 

U-Net 

 U-Net[17] provides powerful semantic segmentation with two parts of convolutional 

layers, including a contracting path to capture context and an expanding path to localize 

information of each pixel. Similar to FCN structure, contracting path and expanding path 

represent traditional convolutional layers and deconvolutional layers, respectively. There 

are two primary differences between them: (1) In fusing step, unlike FCN which simply 

adds the value of two outputs together, U-Net concatenates the channels of each output, 

creating a larger size in channel-axis. (2) In most cases of biomedical images, there is 

very little training data available. As a result, using data augmentation as preprocess is 

necessary[22]. By applying elastic deformations to original training data, the network can 

learn invariance which is especially important in biomedical image segmentation since 

the most common variation in tissues and cells is deformation. 
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 A general CNN focuses on image classification where input is an image and output 

is a label, and which is difficult to apply in most biomedical cases. The main purpose of 

biomedical images is to not only distinguish whether there is a target but also localize the 

area, which U-Net can easily apply. Hence, most biomedical images, e.g., MRI, 

ultrasound, and microscope, take advantage of U-Net nowadays. 

 

Label-free Prediction of Fluorescence images from TL images 

 In the paper by Ounkomol et al. (Allen Institute for Cell Science)[15], a label-free 

method built from CNN-based U-Net architecture was introduced. The model can predict 

3D fluorescent images directly from transmitted light images. Their prediction models 

learn each relationship between TL and cell images for several subcellular structures (cell 

membrane, nuclear envelope, DNA, mitochondria, microtubules, actin, ER, etc.). After 

training, a single 3D TL input can then be applied to multiple subcellular structure models, 

generating integrated images. In other sets of experiments, their method also can predict 

classical 2D immunofluorescence (IF) images from electron micrographs (EM).  

 

 To further examine the performance of the architecture under different imaging 

environments, they trained and tested the model with EM images and IF images from the 
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same samples, but by using two different microscopes. Thus, these two sets of images are 

not spatially aligned. It turned out that the model can successfully register an EM image 

to a target IF image, suggesting this label-free tool can be adopted in diverse imaging 

modalities. 

 

 In addition, they used the model trained on static images to predict fluorescence 

time-series images. By applying their TL-to-fluorescence models to TL 3D time-series at 

5-minute intervals, the model can not only visualize subcellular structures but also 

recognize the dynamics of mitotic events. As reported in the previous researches[13], [23], 

phototoxicity occurs during a long period of acquisition of multi-label live cell 

fluorescence images, which indicates serious challenges in obtaining this type of 

information. Hence, their method prevented such problems from happening and extended 

the duration on which cellular processes can be visualized. 

 

 In another recent paper published by Christiansen et al. from the Google team[16], 

they built neural network models similar to the one proposed by Allen Institute for Cell 

Science[15] to predict fluorescent labels in unlabeled images (TL or DIC) but using 

different approaches. First, their model has a multi-scale input, including small and large 

length-scale paths. For the small length-scale path, the model processes explicit detail 
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near the center of the input. On the other hand, coarse information is processed via a large 

length-scale path in a broad region around the center. Such multi-scale architectures have 

been proof to be useful in computer vision works[24]. This approach helps the model 

better learn the spatial relationship between labeled and unlabeled data. Second, they 

trained the network with images of live cells treated with propidium iodide (PI), a dye 

that labels dead cells. The network accurately distinguished a single dead cell from a mass 

of live cells based on nuclear morphology. Last, they tried to predict specific subcellular 

structures in different plating processes. To their surprise, the network could perform well 

in conditions of low- and high- plating densities whereas the results are better under 

conditions of low-plating densities. 

 

 However, neither of these models conducts the prediction work on high-resolution 

microscope images. Moreover, although Allen Institute for Cell Science has dealt with 

time-series 3D images, they used static 3D z-stack images as training data. Therefore, to 

handle these issues, I adopted and modified the method published by Allen Institute to 

further look into the structures of mitochondria, along with high-resolution time-series 

and z-stack images. 

 

Section 1-3: Specific Aims 
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 The overall workflow of our experiment design is elaborated in Fig. 1.2, with the 

following specific aims:  

 

Figure 1.2: The overall workflow of the experiment design. 

 

Aim1. High-Resolution Imaging 

 The high-resolution and high-contrast mitochondria images are acquired using a 

Zeiss confocal microscope (LSM800) with a 1.40-NA, 63x objective, and Airyscan 

option[19]. By optimizing labeling and image acquisition protocols, we could obtain fine 

details of the mitochondria images, allowing our networks to learn relationships between 

TL and fluorescent labels. 

 

Aim2. Optimized U-Net Model for Mitochondrial Application 

 While acquiring input images in higher resolution, there will be more pixels in total 



doi:10.6342/NTU202003983

11 
 

for the network to train. For example, the optimal size of an Airyscan image is around 

1800x1800 pixels comparing to the confocal images of 500x500 pixels. To efficiently 

extract the information from the input, the original model[15] will be modified with 

deeper layers to preserve extra features inside the images. The improvement of the model 

and the proposed model architecture will be discussed in the next chapter. 

 

Aim3. Specific Mitochondria Label Prediction with TL Input 

 The model trained by our TL microscopy images and fluorescence images has the 

ability to predict the mitochondria label from TL inputs, which do not require fluorescent 

dye labeling. This approach allows us to study morphology and dynamics of mitochondria 

without facing problems like photobleaching and phototoxicity, and enable us to increase 

the duration for imaging and monitoring mitochondrial structures. 
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Chapter Ⅱ: Methods and Materials 

Section 2-1: Cell Culture and Labeling 

AC16 Human Cardiomyocyte Cell Line (AC16) was used in the z-stack and time-

series microscopy image acquisition. The cells were seeded on a 30 mm glass-bottom 

plate. For AC16, the culture media was the same as imaging media, which was 

DMEM/F12 with 12.5% FBS and 1% antibiotic-antimycotic. The cell density was 250 to 

500 thousand cells per plate. To stain the cells, AC16 was first incubated in the imaging 

media with 100 nM Tetramethylrhodamine, methyl ester (TMRM) for 10 to 15 min, and 

then with 2000x to 5000x SYBR GoldTM (Thermofisher) for 20 to 30 min. The cells were 

washed with PBS and fresh imaging media before imaging. 

 

Section 2-2: Cell Imaging 

All the cells were imaged on a Zeiss microscope LSM800 with ZEN Blue 2.6 

software and with a 1.40-NA, 63x objective. The cells were imaged in the microscopy 

incubator with 5% CO2 on the same day we stained them. For each training image, there 

are a total of three channels with corresponding 8-bit (Confocal) or 16-bit (Airyscan) data: 

transmitted light (bright-field), DNA and mitochondrial DNA labeled with SYBR Gold, 

mitochondria labeled with TMRM. The image size for all images is 78 μm * 78 μm, which 

contained 1 to 5 cells of AC16 per image. Table 2.1 shows the imaging parameters for 
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each imaging type. 

 

 

Figure 2.1: The Zeiss Microscope LSM800 with Airyscan. 

 

Imaging Type Acquisition 488 nm laser 561 nm laser Bit Depth 

5-second interval 

15-minute interval 

1-minute interval 

30-second interval 

Con 

Airy + Con 

Airy + Con 

Con 

2%, 660V 

0.2%, 700V 

0.8%, 700V 

2%, 700V 

2%, 680V 

0.2%, 760V 

1%, 750V 

1%, 760V 

8 

16 

16 

8 

z-stack 

HR z-stack (Airyscan) 

HR z-stack (Confocal) 

Con 

Airy + Con 

Con 

2%, 660V 

1%, 730V 

2%, 700V 

2%, 630V 

1%, 750V 

1%, 750V 

8 

16 

8 

HR: high-resolution; Airy: Airyscan; Con: confocal 

Table 2.1: Imaging parameters for each experiment. Note that some acquisitions 

combined two methods (Airyscan and confocal, Second column). The 488 nm laser was 

for SYBR Gold (Third column). The 561 nm laser was for TMRM (Fourth column). The 

upper part is time-series experiments and the lower part is z-stack experiments. 

 

Time-series 

In the 5-second interval acquisitions, each set was imaged for a total of about 5 min 
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using only confocal microscopy. The acquisition settings for each channel were: 488 nm 

laser at 2.00% of 10mW, with detector gain 660 V for SYBR Gold and 300 V for bright-

field; 561 nm laser at 2.00% of 10mM, with detector gain 680 V for TMRM. The images 

were captured at a YX-resolution of 512 px * 512 px with a pixel scale of 0.152 μm/px. 

All time-series sets were composed of 64 frames with the same time interval. 

 

In the long time interval acquisitions(15-minute), we choose the Airyscan detector 

[19] to implement the imaging process. The cell was imaged by Airyscan for two channels: 

SYBR Gold and TMRM, while the confocal microscope was only used for the bright-

field channel. With longer time interval, the total duration for this experiment was about 

16 h for each set (total 64 frames). The acquisition settings for each channel were: 488 

nm laser at 0.2% of 10mW, with detector gain 700 V for SYBR Gold; 561 nm laser at 

0.2% of 10mM, with detector gain 760 V for TMRM; 488nm laser at 2.00% of 10mW, 

with detector gain 300 V for bright-field. The images were also captured at a YX-

resolution of 512 px * 512 px with a pixel scale of 0.152 μm/px. All time-series sets were 

composed of 64 frames with same time interval. 

 

 As for high-resolution time-series images, we used Airyscan and confocal detector 

to conduct the experiment. Since in high-resolution condition, the exposure time of laser 
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is much longer, to avoid the phototoxicity, we reduced the time-series set of 64 frames to 

32 frames. For Airyscan images, the cell was imaged by Airyscan for both SYBR Gold 

and TMRM channels and the bright-field images were obtained by switching to the 

confocal microscope. The duration for high-resolution time-series Airyscan experiment 

was around 32 min for each set of 1-minute interval (total 32 frames). The acquisition 

settings for each channel were: 488 nm laser at 0.8% of 10mW, with detector gain 700 V 

for SYBR Gold; 561 nm laser at 1.00% of 10mM, with detector gain 750 V for TMRM; 

488nm laser at 2.00% of 10mW, with detector gain 300 V for bright-field. The high-

resolution images were captured at a YX-resolution of 1834 px * 1834 px with a pixel 

scale of 0.043 μm/px. For confocal images, the cell was imaged by confocal detector for 

all three channels. The duration for high-resolution time-series confocal experiment was 

15 min for each set of 30-second interval (32 frames). The acquisition settings for each 

channel were: 488nm laser at 2.00% of 10mW, with detector gain 700 V for SYBR Gold 

and 300 V for bright-field; 561 nm laser at 1.00% of 10mM, with detector gain 760 V for 

TMRM. The high-resolution confocal images were captured at a YX-resolution of 917 px 

* 917 px with a pixel scale of 0.085 μm/px 

 

Z-stacks 

In the 512 * 512 z-stack experiment, cells were imaged for up to 3 min on confocal 
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microscope for 64 slices. The acquisition settings for each channel were: 488 nm laser at 

2.00% of 10mW, with detector gain 660 V for SYBR Gold and 300 V for bright-field; 

561 nm laser at 2.00% of 10mM, with detector gain 630 V for TMRM. The images were 

captured at a YX-resolution of 512 px * 512 px with a pixel scale of 0.152 μm/px. All z-

stacks were composed of 64 slices with an interval of 0.100 μm. 

 

 For the high-resolution z-stack experiment, cells were imaged for up to 1.5 min on 

the confocal microscope and up to 15 min on the Airyscan method. The acquisition 

settings of the Airyscan method for each channel were: 488 nm laser at 1.00% of 10mW, 

with detector gain 730 V for SYBR Gold; 561 nm laser at 1.00% of 10mM, with detector 

gain 750 V for TMRM; 488nm laser at 2.00% of 10mW, with detector gain 300 V for 

bright-field. The acquisition settings of the confocal method for each channel were: 

488nm laser at 2.00% of 10mW, with detector gain 700 V for SYBR Gold and 300 V for 

bright-field; 561nm laser at 1.00% of 10mM, with detector gain 750 V for TMRM. For 

confocal microscope z-stack images, the pixel size is 917 px * 917 px with a pixel scale 

of 0.085 μm/px; For Airyscan z-stack images, the pixel size is 1834 px * 1834 px with a 

pixel scale of 0.043 μm/px. Due to the phototoxicity problem in high-resolution images, 

all z-stacks were composed of 32 slices with an interval of 0.150 μm. 
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Section 2-3: Data Preprocessing for Training and Evaluation 

Structure 

(Acquisition) 

Model 

Name 

3rd dimension Number of 

data (train/test) 

Resolution Number of 

slices (frames) 

Mitochondria 

(Airyscan) 

A1 Time-series (15 min) 90/30 512 * 512 64 

DNA 

(Airyscan) 

A2 Time-series (15 min) 90/30 512 * 512 64 

Mitochondria 

(Confocal) 

B1 Time-series (5 sec) 150/50 512 * 512 64 

DNA 

(Confocal) 

B2 Time-series (5 sec) 150/50 512 * 512 64 

Mitochondria 

(Airyscan) 

C1 Time-series (1 min) 47/20 1834 * 1834 32 

DNA 

(Airyscan) 

C2 Time-series (1 min) 47/20 1834 * 1834 32 

Mitochondria 

(Confocal) 

D1 Time-series (30 sec) 60/15 917 * 917 32 

DNA 

(Confocal) 

D2 Time-series (30 sec) 60/15 917 * 917 32 

Mitochondria 

(Confocal) 

E1 Z-stack (0.100 μm) 36/14 512 * 512 64 

DNA 

(Confocal) 

E2 Z-stack (0.100 μm) 36/14 512 * 512 64 

Mitochondria 

(Airyscan) 

F1 Z-stack (0.150 μm) 47/18 1834 * 1834 32 

DNA 

(Airyscan) 

F2 Z-stack (0.150 μm) 47/18 1834 * 1834 32 

Mitochondria 

(Airyscan) 

G1 Z-stack (0.150 μm) 47/18 917 * 917 32 

DNA 

(Airyscan) 

G2 Z-stack (0.150 μm) 47/18 917 * 917 32 

Mitochondria 

(Confocal) 

H1 Z-stack (0.150 μm) 46/17 917 * 917 32 

DNA 

(Confocal) 

H2 Z-stack (0.150 μm) 46/17 917 * 917 32 

Table 2.2: 3D live cell imaging data used in this research. Each structure was imaged in 

Airyscan or Confocal acquisition (Leftmost column). Each 3D image was composed in 

the order of either “Length, width, height” or “Length, width, time” depended on the 3rd 

dimension (Third column). The total dataset was split into 75% training set and 25% 

testing set (Fourth column). The number of resolution presented length * width (Fifth 

column). The size of 3rd dimension is either 32 or 64 (Rightmost column). The abbreviated 

name of each model was shown in the table (Second column). 

 

Table 2.1 shows the data and the details we used to train and evaluate. Our models 

are based on different types of data, including short-interval live cell time-lapse, long-
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interval live cell time-lapse, 3D live cell z-stacks, and their corresponding pairs in high-

resolution (512 * 512 vs 1834 * 1834). The data were split into 75% training sets and 

25% testing sets, and then the training data were again split into 90% training sets and 

10% validation sets. All multi-channel time-series, multi-channel z-stack data were 

obtained by our Zeiss LSM800 microscope. For Airyscan, we must first utilize “Airyscan 

process” function in ZEN Blue 2.6 to reconstruct the high-contrast image with 32 original 

images before doing subsequent procedures. Note that to compare the result of high-

resolution Airyscan images (1834 px * 1834 px) with the result of confocal images (917 

px * 917 px), Airyscan images were downscaled by a factor of two in YX dimension. 

 

With the finished pairs, the model can be trained and evaluated to predict the tagged 

subcellular structure pixelwise. All images were converted to floating-point and resized 

via cubic interpolation for the purpose of having the same pixel scale in z-stacks (0.1μm 

* 0.1μm * 0.1μm for original size and 0.15μm * 0.15μm * 0.15μm for high-resolution). 

Result images were 176 px * 176 px for original images, 396 px * 396 px for downscaled 

high-resolution images, or 512 px * 512 px for high-resolution images in Y and X 

respectively. For original z-stack and time-series, there will be 64 slices in the result; For 

high resolution ones, there will be 32 slices in the result. Last, to diminish the difference 

caused by illumination, pixel intensities of input and target images were improved by Z-
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score normalization. In the process of the Z-score normalization, we rescaled the data 

intensities into a normal distribution with the mean of 0 and the standard deviation of 1. 

This step is necessary to make our ML task well defined since the pixel intensities are not 

measured in comparable absolute units. 

 

Section 2-4: Model Architecture 

 Figure 2.2 shows the overall diagram of the convolutional neural networks model. 

We adopt the method published by Allen Institute of Cell Science which is based on the 

U-Net architecture [17]. The modified U-Net model proposed in this thesis is shown in 

Figure 2.3. 

 

Figure 2.2: The original diagram of CNNs. Note that each layer consists of convolutional 

layer, batch normalization and ReLU function except the “concatenate” arrow and the 

rightmost arrow. Patch size of input is 32 * 64 * 64 in this model. Figured adapted from 

Ronneberger et al. Lecture Notes in Computer Science 234–241 (2015) [17] and 

Ounkomol et al. Nature Methods (2018) [15]. 
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Our original model consists of different layers that perform three kinds of 

convolution functions: convolutional layers with a stride of 2 pixels ( The orange arrows 

in Fig. 2.2), convolutional layers with a stride of 1 pixel ( The brown arrows in Fig. 2.2), 

and deconvolutional layers with a stride of 2 pixels (The blue arrows in Fig. 2.2), each 

comes with a batch normalization[25] and ReLU function. To keep the size of the output 

layers the same as input size, the horizontal arrows represent the convolution layers that 

are 3 * 3 pixels with a stride of 1-pixel using zero-padding on input. For the down arrows, 

they are 2 * 2 pixels convolution layers with a stride of 2 pixels in order to halve the size 

of the output. Last, the up arrows represent the deconvolution (transposed convolution) 

layers that are 2 * 2 pixels with a stride of 2 pixels for the purpose of doubling the output 

size. Note that in the last layer of the model, there are no ReLU function and batch 

normalization. The number of output channels in each layer are indicated in the Figure 

2.2. 

 

 As mentioned in Section 1-2, the purpose of the left-hand side of the U-Net is to 

extract features from the input data while the right-hand side stands for reconstructing 

images from the features of the input. Since in every layer we would perform batch 

normalization[25] and ReLU function right after the convolution function, the output of 
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convolutional layer is considered reliable in pixel intensities. 

 

 To further improve the performance of high-resolution images, the bigger patch size 

is needed. Hence, we modified the original model by adding more convolutional layers, 

creating a deeper neural network which can extract more features from input data. As 

shown in Figure 2.3, there is one more arrow that goes down, meaning the model will 

keep doing convolution to halve the size. Therefore, with such fine details, we can deal 

with a bigger patch size without losing information. 

 

Figure 2.3: The diagram of modified CNNs. The difference between this model and the 

original one is highlighted in red rectangle. Patch size of input is 32 * 128 * 128 in this 

model. 

 

 Our model was initially trained on a GeForce GTX 1080Ti with 12 GB RAM, with 

the patch size of 64 px * 64 px * 32 px. As patch size increases, we trained the model on 

several Tesla V100s with 32 GB RAM, using data parallelism as well. The GPU device 
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Tesla V100 was provided by Taiwan Computing Cloud (TWCC). For the details of 

TWCC, please refer to the TWCC website (https://www.twcc.ai/). All the patches were 

randomly subsampled across all training images. The training procedure updated its 

parameters via stochastic gradient descent to minimize the mean squared error. With a 

learning rate of 0.001 for different batch iterations (depends on the size of training data), 

we used the Adam optimizer[26] as an optimization method. Choosing a batch size of 24 

for our 3D model, the total training progress took about 5 hours in our workstation and 4 

hours in TWCC for 10000 iterations and so on. For prediction tasks, it takes 1 second for 

a single 3D image (XYZ or XYT) whose input pixel size is 512 px * 512 px, and 5 second 

for a single 3D image whose input pixel size is 917 px * 917 px. Both original and 

modified model training pipelines were implemented in Python, using the PyTorch 

package[27]. Table 2.3 shows the detail of hyperparameters for each corresponding 

model. 

 

Model Iteration 

Number 

Patch size  

(ZXY or TXY) 

Architecture 

Depth 

A1,2 (Airyscan, 15min) 

B1,2 (Confocal, 5sec) 

C1,2 (Airyscan, 1min, HR) 

D1,2 (Confocal, 30sec, HR) 

20000 

20000 

10000 

10000 

32 * 64 * 64 

32 * 64 * 64 

32 * 128 * 128 

32 * 64 * 64 

4 

4 

5 

4 

E1,2 (Confocal, z-stack) 

F1,2 (Airyscan, z-stack, HR) 

G1,2 (Airyscan, z-stack, DS) 

H1,2 (Confocal, z-stack, HR) 

10000 

10000 

10000 

10000 

32 * 64 * 64 

32 * 128 * 128 

32 * 64 * 64 

32 * 64 * 64 

4 

5 

4 

4 

HR: high-resolution; DS: downscaling 

A1, B1…H1: Mitochondria model; A2, B2…H2: DNA model 
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Table 2.3: Hyperparameters used in our experiment. The iteration numbers were 

depended on the number of training images (Second column). The dimensions of the 

patch were either ZXY or TXY (Third column). Architecture Depth referred to the 

different models (4: original model from Allen Institute, 5: modified model). The upper 

part is time-series models and the lower part is z-stack models. The abbreviation of each 

model is shown in Table 2.2. 

 

Section 2-5: Model Performance Analysis 

 For our model performance, we choose the Pearson correlation coefficient to 

quantify the accuracy: 

                                                 𝑟 =
∑(𝑥 − �̅�)(𝑦 − �̅�)

√∑(𝑥 − �̅�)2 ∑(𝑦 − �̅�)2
                                                 (2.1) 

Here y stands for the pixel intensities of the model’s prediction (output), and x stands 

for the ground truth test images. The closer x is to y, the r value will become bigger. It is 

intuitive that as the size of the signal increases, the size of random fluctuations will also 

increase, which consequently leads to degrading in model performance. For example, in 

some cases of the high-resolution image experiment, the model itself cannot classify 

between background noise and labeled target. Hence, the result may be good in human 

observation but bad in Pearson correlation coefficient. 
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Chapter Ⅲ: Results 

 In this chapter, we will present the predictions and the performance from TL images 

using different models. In Section 3-1, we compared the short interval time-series 

predictions of mitochondria and DNA with the long interval predictions. In Section 3-2, 

we presented the z-stack predictions using our model and compared the performance with 

the pretrained model published by Allen Institute for Cell Science. In Section 3-3, we 

compared the high-resolution (1834 *1834) predictions with the normal-resolution (512 

*512) predictions. In Section 3-4, we compared the performance of the models trained by 

images acquired using different methods: Airyscan microscopy and confocal microscopy. 

Finally, in Section 3-5, we constructed a general model that was trained with both time-

series and z-stack images. 

 

Section 3-1: Time-series Prediction 

Fig. 3.1 and Fig. 3.2 show that the model could predict mitochondria and DNA from 

the transmitted light images. In the mitochondrial structure predictions, the model 

successfully classified between tubular mitochondria and background. But mitochondria 

network clustered around nucleus are hardly classified due to the overlap of structure in 

transmitted light. On the other hand, DNA prediction was mostly overlapped with 

mitochondria except regions of nucleus. However, the structure of mtDNA is not as clear 
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as shown in the fluorescence-labeled images. Fig. 3.3 shows the Pearson correlation 

coefficient (r) between ground truth (target) and predicted image from our model. In the 

experiment of long intervals, slices between each time-series image lack of location 

relationships, resulting in low performance. 

 

5-second Interval 

(a) Fluorescence prediction from transmitted light 

 

(b) Time-series results (Top: Prediction; Bottom: Target) 

 



doi:10.6342/NTU202003983

26 
 

 

Figure 3.1: (a) Fluorescence prediction from transmitted light (5-second interval). The 

left column is the same single t-slice of a 3D transmitted light input image. The middle 

column is mitochondria ground-truth (top) and DNA ground-truth (bottom). The right 

column is images predicted by corresponding models (mitochondria model and DNA 

model). The example images are selected from a larger pool of test images. (b) Time-

series Prediction of mitochondria and DNA from transmitted light (top) and the ground 

truth of them (bottom). The interval between each pair is 5-second. 

 

15-minute Interval 

(a) Fluorescence prediction from transmitted light 

 

(b) Time-series results (Top: Prediction; Bottom: Target)  
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Figure 3.2: (a) Fluorescence prediction from transmitted light (15-minute interval). The 

left column is the same single t-slice of a 3D transmitted light input image. The middle 

column is mitochondria ground-truth (top) and DNA ground-truth (bottom). The right 

column is images predicted by corresponding models (mitochondria model and DNA 

model). The example images are selected from a larger pool of test images. (b) Time-

series Prediction of mitochondria and DNA from transmitted light (top) and the ground 

truth of them (bottom). The interval between each pair is 15-minute. 
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Figure 3.3: Prediction performance across different time intervals of time-series image 

acquisitions. 

 

Section 3-2: Z-stack Prediction 

Fig. 3.4 shows that the results were successfully predicted from transmitted light 

images. Compared with previous works done by Allen Institute for Cell Science[15], our 

z-stack prediction focused on mitochondria and DNA with higher magnification. 

Although the prediction performance of our model was slightly lower than theirs (Fig. 

3.5a), our results provided more fine details about mitochondria structure under such 

magnification (1.40-NA, 63x objective in our confocal microscope vs 1.25-NA, 100x 

objective in spinning disk microscope from Allen Institute). It is noted that under such 

magnfication, the noise and the dust will affect the performance siginicantly, resulting in 

bigger error bar (Fig. 3.5a). 
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Figure 3.4: Fluorescence prediction from transmitted light (z-slice interval of 0.29μm). 

The left column is the same single z-slice of a 3D transmitted light input image. The 

middle column is mitochondria ground-truth (top) and DNA ground-truth (bottom). The 

right column is images predicted by corresponding models (mitochondria model and 

DNA model). The example images are selected from a larger pool of test images. 

 

 

Figure 3.5: (a) Prediction performance on mitochondria across different models. (b) 

Prediction performance on different subcellular structures. 

 

Section 3-3: High-resolution Image Prediction (Without downscaling) 
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Both Fig. 3.6 and Fig. 3.7 shows that the model could predict the subcellular 

structures from transmitted light images. However, the results were blurry because the 

background noise was also magnified under high-resolution TL images. Since the deep 

neural network structure is susceptible to blur and noise distortion[28], such magnified 

noise will lead to poor performance of the model. Fig. 3.8 shows that the average Pearson 

correlation coefficient (r) of high-resolution decreased in both time-series and z-stack. 

 

Time-series 

 

Figure 3.6: High-resolution fluorescence prediction from transmitted light (1-minute 

interval). The left column is the same single t-slice of a 3D transmitted light input image. 

The middle column is mitochondria ground-truth (top) and DNA ground-truth (bottom). 

The right column is images predicted by corresponding models (mitochondria model and 

DNA model). The example images are selected from a larger pool of test images. 

 

Z-stack 
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Figure 3.7: High resolution fluorescence prediction from transmitted light (z-slice interval 

of 0.15μm). The left column is the same single z-slice of a 3D transmitted light input 

image. The middle column is mitochondria ground-truth (top) and DNA ground-truth 

(bottom). The right column is images predicted by corresponding models (mitochondria 

model and DNA model). The example images are selected from a larger pool of test 

images. 

 

 

Figure 3.8: (a) Time-series prediction performance across high resolution (HR, 1834 

*1834) and original resolution ( Original, 512 * 512). (b) Z-stack prediction performance 

across HR and original resolution. 
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Section 3-4: Airyscan Prediction and Confocal Prediction 

 In both time-series and z-stack, the model trained on images using Airyscan method 

could predict mitochondria structure with fewer errors (Fig. 3.9a, Fig. 3.10a). However, 

the performance on DNA structure (Fig. 3.9a, Fig. 3.10a) was poor since Airyscan method 

will reduce the intensity of nucleus whose intensities were already low. The intensity of 

mtDNA remained the same or increased in the meantime. Consequently, this process will 

result in irrelevant pairs between TL input images and fluorescence target images. 

 

In contrast, Fig. 3.9b and Fig. 3.10b show that the model trained on images using 

confocal method could predict mitochondria and DNA structures with higher accuracy. 

Because the images acquired using confocal microscopy provide high-contrast and 

relatively high-resolution without any imaging process function, such methods ensured 

the high-relevant relationship between TL input images and fluorescence target images. 

Fig. 3.11 shows that in both time-series and z-stack, the Pearson correlation coefficient 

(r) of the confocal imaging method was better than that of the Airyscan imaging method. 

 

 Table 3.1 shows the overall performance metrics for the models mentioned in this 

chapter. The performance metrics were composed of the Pearson correlation coefficient 

(r) for each subcellular structure, mitochondria and DNA. Compared with other models, 
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the model trained with the images acquired using high-resolution confocal microscopy 

has superior performance in both time-series (D1,2) and z-stack (H1,2). The details of the 

Pearson correlation coefficient as shown in Figure 3.12, includes the performance of each 

testing set in the model of H1,2. 

 

Time-series 

(a) Airyscan 

 

(b) Confocal 
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Figure 3.9: (a) Time-series fluorescence prediction from transmitted light using Airyscan. 

(b) Time-series fluorescence prediction from transmitted light using confocal microscopy. 

In both (a) and (b), the left column is the same single t-slice of a 3D transmitted light 

input image. The middle column is mitochondria ground-truth (top) and DNA ground-

truth (bottom). The right column is images predicted by corresponding models 

(mitochondria model and DNA model). The example images are selected from a larger 

pool of test images. 

 

Z-stack 

(a) Airyscan 

 

(b) Confocal 

 

Figure 3.10: (a) Z-stack fluorescence prediction from transmitted light using Airyscan. (b) 
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Z-stack fluorescence prediction from transmitted light using confocal microscopy. In both 

(a) and (b), the left column is the same single t-slice of a 3D transmitted light input image. 

The middle column is mitochondria ground-truth (top) and DNA ground-truth (bottom). 

The right column is images predicted by corresponding models (mitochondria model and 

DNA model). The example images are selected from a larger pool of test images. 

 

 

Figure 3.11: (a) Time-series prediction performance across different imaging methods. (b) 

Z-stack prediction performance across different imaging methods. 

 

Dataset: LSM800 Microscope 

Images 

Models Mitochondria DNA 

A1,2 

B1,2 

C1,2 

D1,2 

0.4020 

0.4956 

0.4989 

0.6431 

0.2032 

0.3363 

0.2988 

0.4746 

E1,2 

F1,2 

G1,2 

H1,2 

0.6488 

0.5633 

0.5879 

0.7312 

0.4703 

0.3966 

0.4361 

0.5273 

Table 3.1: Performance metrics for the considered models trained and tested using the 

microscope images as training and testing datasets, respectively. The upper part (A, B, C, 

D) is for the time-series prediction and the lower part (E, F, G, H) is for the z-stack 

prediction. All the model experiments are described in the text. The numbers in the table 

are the values of Pearson correlation coefficient. The abbreviation of each model is shown 
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in Table 2.2.  

 

 

 

Figure 3.12: Summary results of methods used on this chapter. (a) The performance 

between different models. (b) The performance from the model with best accuracy (The 

total number of testing sets are 17). The abbreviation of each model is shown in Table 2.2. 

Groups: 

A1 (Mitochondria, Airyscan, 15min) 

B1 (Mitochondria, Confocal, 5sec) 

C1 (Mitochondria, Airyscan, 1min, HR) 

D1 (Mitochondria, Confocal, 30sec, HR) 

E1 (Mitochondria, Confocal, z-stack) 

F1 (Mitochondria, Airyscan, z-stack, HR) 

G1 (Mitochondria, Airyscan, z-stack, DS) 

H1 (Mitochondria, Confocal, z-stack, HR) 

A2 (DNA, Airyscan, 15min) 

B2 (DNA, Confocal, 5sec) 

C2 (DNA, Airyscan, 1min, HR) 

D2 (DNA, Confocal, 30sec, HR) 

E2 (DNA, Confocal, z-stack) 

F2 (DNA, Airyscan, z-stack, HR) 

G2 (DNA, Airyscan, z-stack, DS) 

H2 (DNA, Confocal, z-stack, HR) 

HR: high-resolution, DS: downscaling 
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Section 3-5: Prediction from General Model 

 In this section, we combined time-series images with z-stack images to train a 

general (combined) model that can implement in both time-series and z-stack image 

segmentation tasks. The combined dataset we used to train the model is the same as those 

we used to train D1,2 model and H1,2 model. Besides, D1,2 and H1,2 were also the models 

we used to evaluate the performance over the general model later on.  

 

 Both Fig. 3.13 and 3.14 show that the predictions were successfully conducted in 

their corresponding models. The difference of the predictions between the z-stack model 

and the general model was a bit to none, indicating that the general model has almost the 

same performance as the z-stack model. On the other hand, the difference of the 

predictions between the time-series model and the general model was more obvious, 

suggesting that the general model functions worse in the time-series prediction compared 

to the z-stack prediction. 

 

 Fig 3.15 shows the overall performance of each model across different prediction 

tasks. Note that the predictions from their corresponding models could reach better 

performances (Combined to combined, time-series to time-series, etc.). In addition, the 

general (combined) model had relatively fine performance in all three tasks. 
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Time-series 

(a) 

 

(b) 

 

Figure 3.13: (a) Fluorescence prediction from transmitted light across the time-series 

models and the combined models. The left column is the same single t-slice of a 3D 

transmitted light input image. The second column is mitochondria ground-truth (top) and 

DNA ground-truth (bottom). The third column is images predicted by the time-series 

models. The right column is images predicted by the combined models. The example 

images are selected from a larger pool of test images. (b) The overlap predictions of each 

set (Left: Target, Middle: Time-series model, Right: Combined Model). 
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Z-stack 

(a) 

 

(b) 

 

Figure 3.14: (a) Fluorescence prediction from transmitted light across the z-stack models 

and the combined models. The left column is the same single z-slice of a 3D transmitted 

light input image. The second column is mitochondria ground-truth (top) and DNA 

ground-truth (bottom). The third column is images predicted by the z-stack models. The 

right column is images predicted by the combined models. The example images are 

selected from a larger pool of test images. (b) The overlap predictions of each set (Left: 

Target, Middle: Z-stack model, Right: Combined Model). 
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Figure 3.15: (a) Combined dataset prediction performance across different model types. 

(b) Time-series prediction performance across different model types. (c) Z-stack 

prediction performance across different model types. 
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Chapter Ⅳ: Discussion 

Section 4-1: Label-free Prediction on Mitochondria 

 The methodology presented in this research provides potential ways to analyze and 

study mitochondrial structure and dynamics in many aspects. Like previous works done 

by the Allen Institute for Cell Science[15] and Google[16], it could reduce time sample 

preparation and cell labeling, eliminating problems of phototoxicity and photobleaching. 

Moreover, there are two major improvements in our research: (1) Label-free prediction 

of time-series fluorescence images from TL images. Unlike the time-series prediction 

from Allen Institute for Cell Science whose training data was static cell images, we used 

live cell time-series images as our training data. In this way, the correlation between the 

time-series prediction and actual cell movement will be stronger. As mentioned in Section 

1.2, the phototoxicity often happens in long-duration live cell fluorescence imaging, 

building a barrier for researchers to obtain time-series information. Therefore, our model 

provides an alternative method to visualize cellular processes with longer timescales. (2) 

High-resolution prediction from confocal and Airyscan images. Our model was trained 

with confocal and Airyscan images which provide fine details of mitochondria. Although 

the prediction performance may drop slightly, such details are valuable for researchers to 

observe the morphology and dynamics of mitochondria and further analyze them. 
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 Deep learning has been applied in microscope images in recent years, achieving 

advances in segmentation and classification. For example, using segmented images of 

simple cells to classify its shape[29], and segmenting cells from bright-field z-stacks[30]. 

Our research on microscope images using deep learning may contribute to image-based 

tasks, such as long-time-series observation of tissues or cells[13]. As related works 

demonstrate the possibility to predict from TL images[15], [16], there is the chance that 

such deep learning techniques can be applied to other biomedical image tasks. 

 

Section 4-2: Result Analysis 

 Beside the predictions on Mitochondria and DNA, there were also some factors that 

affect the model performance. First, to test the effect of number of training images (input 

data), we trained the model with different numbers of training images, from 2 to 46. The 

other hyperparameters were remained the same. The dataset used in this experiment was 

the z-stack confocal images with the resolution of 917 * 917 pixels, which was the same 

used in the model H1. Fig. 4.1 shows the performance on different numbers of training 

images. It is obvious that as the number of training images increases, the overall accuracy 

will improve. However, the performances between 32 and 46 are almost the same, 

indicating that increasing dataset is not cost-effective to improve the model performance. 
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Figure 4.1: Prediction performance across different number of training images.  

 

 Second, to test whether the photobleaching will affect the model performance, we 

evaluated the accuracy between images of different time, from the first to the last. The 

dataset used in this experiment was the time-series confocal images with the resolution 

of 917 * 917 pixels, which was the same used in the model D1,2. Fig. 4.2 shows the 

performance on images of different time. The accuracy in both mitochondria and DNA 

decreased slightly after long time of imaging. This suggested that the model performance 

was affected by the photobleaching problem occurred in long-time imaging.   

 

 Third, to validate whether the z-stack model can be used in predicting time-series 

images and thus there is no need for the time-series model, we used two models (H1,2 and 

D1,2) which were previously trained with different types of images (z-stack and time-

series) to do time-series prediction. Fig. 4.3 shows that the model trained with the time-
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series images could achieve better accuracy on the task of predicting time-series images 

compared to the model trained with the z-stack images. Hence, it is noted that to get better 

prediction results, the training and the testing images sharing same imaging parameters 

are recommended. 

 

 

Figure 4.2: Prediction performance across images of different time.  

 

 

Figure 4.3: Time-series prediction performance across different model types.  
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 Last, the patch size of input data will also affect the prediction. Hence, we trained 

the model with different patch sizes to evaluate the performance. Here, we used the same 

model architecture adapted from Allen Institute. The dataset used in this experiment was 

the z-stack confocal images with the resolution of 917 * 917 pixels, which was the same 

used in the model H1. Fig. 4.4 shows that as the patch size increases, the model 

performance will also improve. Nevertheless, the performance on patch size of 128 was 

poorer than that on patch size of 64, indicating that increasing the patch size will not lead 

to better performance unless we modify the architecture of the model. 

 

 

Figure 4.4: Prediction performance across different patch sizes. 

 

Section 4-3: Experimental Difficulties 

 We faced several difficulties during our experiments. First, the Airyscan microscopy 
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method could not combine with TL microscopy method in the same experimental step. 

The original system of ZEN Blue 2.6 did not support such acquisition function. To solve 

this issue, we used “Experiment Designer” inside ZEN Blue 2.6 to create multi-

experimental blocks that separate Airyscan and TL microscopy acquisitions into different 

blocks. In that way, we could acquire TL images and their corresponding Airyscan images 

simultaneously. 

 

 Second, in the experiment of long interval time-series imaging, the cells may move 

out of the visual field and the color will fade. To deal with the color fading problem, we 

added 1% antibiotic-antimycotic in each cell medium. But for the cell moving problem, 

we have not overcome it for yet. The potential solution is to fix the cells with formalin 

adding into the medium. 

 

 Third, for most Airyscan experiments, the acquisition time was so long that kills the 

cells. To solve the issue, we came up with two possible solutions: (1) Reduce the laser 

intensity of TMRM channel and SYBR Gold channel. In this way, cells would survive 

under the acquisition of the Airyscan method. For example, in our time-series experiment 

of the 15-minute interval, we reduced the intensity of the laser from 1% to 0.2%. (2) 

Reduce the slices (z-stack) or frames (time-series) of the experiment. In high-resolution 
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imaging acquisition, we reduced the original 64 slices of z-stack to 32 slices (64 frames 

of time-series to 32 frames), which can accelerate the total acquisition time, increasing 

the chance that cells can survive. 

 

 Last, in time-series experiments, the water vapor will accumulate on the upper cover 

of the plate after long-time imaging, resulting in blurs and darkness on TL images. Such 

noise problem will affect the accuracy of the prediction as we mentioned in Section 3.3. 

The solution, for now, was to remove the upper cover during the experiment. This move 

may cause pollution of cells, which needs further improvement and alternative solutions 

in the future. 

 

Section 4-4: Limitations 

 The method in this research exists its limitations. First, with supervised machine 

learning, the prediction performance depends on the information contained in input data. 

Without clear and correlated TL and fluorescence input, the model cannot learn a 

relationship between them. For example, in the case of DNA prediction on different 

conditions, the performance was not good as mitochondria due to the invisibility of 

mtDNA on TL images and the corresponding low association between TL and 

fluorescence images of DNA.  
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Second, the quantity and quality will be key factors that influence our model 

performance. In most of our experiments, the training data were insufficient since the 

training process can reach low loss in the training set but unstable loss in the validation 

set. Besides, in live cell imaging, especially in high-resolution and time-series, there were 

some dust and water spots on TL images after long time. This will then become the noise 

on the input data, resulting in poor model performance. The possible solution is to do 

some denoise procedures before feeding them into the model. 

 

 In addition, the model cannot perform as well with inputs of different cellular 

morphologies and different imaging parameters. In most of our testing sets, the 

predictions with low Pearson correlation coefficients were those with abnormal shapes. 

The same issue happened when we used the model from Allen Institute[15] trained with 

hiPSC to predict our own data (AC16). On the other hand, the prediction from the TL 

images acquired with imaging parameters that were the same as those used to train the 

model can achieve the highest accuracy; The prediction from the TL images with different 

parameters will provide poor results undoubtedly. For instance, the predictions from the 

TL images acquired with 5-second time interval can achieve ideal performance using the 

model with 5-second time interval training sets, but achieve bad performance using the 
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model with 15-minute time interval. 

 

 Last, as we know, the model performance can be improved by modifying network 

architectures and hyperparameters, but it is difficult to understand how such 

modifications will affect the performance. In our experiment design, there are two 

networks (Fig. 2.2 and Fig. 2.3) and several hyperparameters need to be decided: patch 

size, number of iteration, batch size, etc. These all will affect the performance of the 

model. The only way to find out whether the changes improve the performance is to finish 

each experiment completely, which spends plenty of time. Hence, having a 

comprehensive understanding of the functions inside the model will be critical for future 

improvement. 
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Chapter Ⅴ: Conclusion and Future Work 

 This research constructs specific models that provides time-series, z-stack 

predictions of Mitochondria structures with TL images from Airyscan and confocal 

microscopy. In the confocal experiments, prediction results show that both the time-series 

and z-stack models can achieve relatively fine performance under an interval of short-

time or thin z-stack. 

 

 To further improve the overall performance, there are some future directions: (1) 

Increase the total number of TL images and fluorescence images. This can be done by 

data augmentation such as image rotation or distortion. (2) Data preprocessing. With more 

stages of preprocessing, such as Salt-and-pepper noise reduction, dust artifact removal, 

and flat field correction, we can ensure the quality of the training data. (3) Model 

interpretation. From another point of view, we can try to open the black box of the model, 

understanding the principle of its prediction work. 

 

 Notwithstanding the limitations existing in our presented methodology, this study 

does suggest an alternative approach in broader biological imaging areas where it may be 

an opportunity for a breakthrough.  
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